cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 81 results. Next

A328928 Squares visited by a knight moving on a taxicab geometry numbered board where the knight moves to the smallest numbered unvisited square; the minimum distance from the origin is used if the square numbers are equal; the smallest spiral number ordering is used if the distances are equal.

Original entry on oeis.org

0, 3, 2, 1, 2, 1, 2, 1, 2, 1, 2, 3, 4, 5, 2, 3, 4, 3, 4, 3, 2, 5, 4, 3, 4, 5, 2, 3, 4, 5, 4, 5, 4, 3, 4, 5, 6, 3, 4, 3, 4, 3, 4, 3, 4, 5, 6, 5, 6, 7, 6, 5, 4, 5, 4, 7, 6, 5, 6, 7, 6, 5, 6, 5, 4, 7, 6, 5, 6, 7, 6, 5, 8, 7, 6, 7, 6, 5, 6, 7, 6, 5, 6, 5, 6, 7, 8, 7, 8, 7, 6, 7, 8, 7, 6, 7, 8, 7, 6
Offset: 0

Views

Author

Scott R. Shannon, Oct 31 2019

Keywords

Comments

This sequence uses the taxicab geometry distance from the 0-squared origin to enumerate each square on the board. At each step the knight goes to an unvisited square with the smallest square number. If the knight has a choice of two or more squares with the same number it then chooses the square which is the closest to the 0-squared origin. If two or more squares are found which also have the same distance to the origin, then the square which was first drawn in a square spiral numbering is chosen, i.e., the smallest spiral numbered square as in A316667.
The sequence is finite. After 1092366 steps a square with the number 728 (standard spiral number = 1165673) is visited, after which all neighboring squares have been visited.
See A328908(n) for the position on the spiral (cf. A316328) of the square visited at move n. - M. F. Hasler, Nov 04 2019

Examples

			The squares are labeled using their taxicab geometry distance from the origin:
.
    +----+----+----+----+----+----+----+
    |  6 |  5 |  4 |  3 |  4 |  5 |  6 |
    +----+----+----+----+----+----+----+
    |  5 |  4 |  3 |  2 |  3 |  4 |  5 |
    +----+----+----+----+----+----+----+
    |  4 |  3 |  2 |  1 |  2 |  3 |  4 |
    +----+----+----+----+----+----+----+
    |  3 |  2 |  1 |  0 |  1 |  2 |  3 |
    +----+----+----+----+----+----+----+
    |  4 |  3 |  2 |  1 |  2 |  3 |  4 |
    +----+----+----+----+----+----+----+
    |  5 |  4 |  3 |  2 |  3 |  4 |  5 |
    +----+----+----+----+----+----+----+
    |  6 |  5 |  4 |  3 |  4 |  5 |  6 |
    +----+----+----+----+----+----+----+
.
If the knight has a choice of two or more squares with the same number which also have the same distance from the origin, then the square with the minimum square spiral number, as shown in A316667, is chosen.
		

Crossrefs

Cf. A174344, A274923, A296030 (coordinates of the n-th point on the spiral).

Programs

Formula

a(n) = |A174344(p)| + |A274923(p)| with p = A328908(n)+1. - M. F. Hasler, Nov 04 2019

A328929 Squares visited by a knight moving on a square-ringed numbered board where the knight moves to the smallest numbered unvisited square; the minimum distance from the origin is used if the square numbers are equal; the smallest spiral number ordering is used if the distances are equal.

Original entry on oeis.org

0, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 2, 2, 3, 2, 3, 2, 2, 3, 3, 2, 3, 3, 2, 2, 3, 3, 4, 3, 3, 2, 3, 4, 2, 3, 2, 3, 2, 3, 2, 3, 4, 3, 4, 5, 3, 3, 4, 5, 3, 4, 5, 4, 4, 5, 6, 4, 5, 3, 4, 5, 4, 5, 6, 4, 3, 4, 5, 4, 4, 5, 4, 4, 5, 4, 3, 4, 5, 4, 4, 5, 4, 4, 5, 4, 5, 4, 4, 5, 4, 4, 5, 6, 5, 5, 6
Offset: 0

Views

Author

Scott R. Shannon, Oct 31 2019

Keywords

Comments

This sequence uses the number of the square ring of squares surrounding the 0-numbered origin to enumerate each square on the board. At each step the knight goes to an unvisited square with the smallest square number. If the knight has a choice of two or more squares with the same number it then chooses the square which is the closest to the 0-squared origin. If two or more squares are found which also have the same distance to the origin, then the square which was first drawn in a square spiral numbering is chosen, i.e., the smallest spiral numbered square as in A316667.
The sequence is finite. After 25108 steps a square with the number 73 (standard spiral number = 21041) is visited, after which all neighboring squares have been visited.

Examples

			The squares are labeled using the number of the square ring of squares surrounding the origin:
.
    +---+---+---+---+---+---+---+
    | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
    +---+---+---+---+---+---+---+
    | 3 | 2 | 2 | 2 | 2 | 2 | 3 |
    +---+---+---+---+---+---+---+
    | 3 | 2 | 1 | 1 | 1 | 2 | 3 |
    +---+---+---+---+---+---+---+
    | 3 | 2 | 1 | 0 | 1 | 2 | 3 |
    +---+---+---+---+---+---+---+
    | 3 | 2 | 1 | 1 | 1 | 2 | 3 |
    +---+---+---+---+---+---+---+
    | 3 | 2 | 2 | 2 | 2 | 2 | 3 |
    +---+---+---+---+---+---+---+
    | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
    +---+---+---+---+---+---+---+
.
If the knight has a choice of two or more squares with the same number which also have the same distance from the origin, then the square with the minimum square spiral number, as shown in A316667, is chosen.
		

Crossrefs

Cf. A328909 (number of the visited square, following spiral numbering).
Cf. A326922 (variant using Euclidean or L2-norm), A328928 (variant with 1-norm = taxicab distance); A326924, A328908 (corresponding trajectories, i.e., spiral number of squares).

Programs

Formula

a(n) = max(|A174344(p)|, |A274923(p)|), p = A328908(n)+1. - M. F. Hasler, Nov 04 2019

A328909 Knight's tour on spirally numbered infinite board, when the knight always jumps on the unvisited square closest to the origin, first according to the sup-norm, then 2-norm, then number of the square: a(n) = number of square visited at move n.

Original entry on oeis.org

0, 9, 2, 5, 8, 3, 6, 1, 4, 7, 10, 13, 28, 31, 14, 11, 26, 23, 44, 19, 22, 43, 40, 17, 34, 37, 18, 15, 32, 29, 52, 25, 46, 21, 42, 69, 20, 39, 16, 33, 12, 27, 24, 45, 74, 41, 68, 103, 38, 35, 60, 93, 30, 53, 84, 49, 78, 115, 160, 75, 116, 47, 76, 113, 72, 107, 150, 67, 36, 61, 94, 57, 54, 85, 50, 79, 82
Offset: 0

Views

Author

M. F. Hasler, Oct 31 2019

Keywords

Comments

Differs from A326924 (where only the 2-norm is considered) from a(34) = 42 on, and from A316328 (which considers only the number of the square) from a(48) = 38 on.
When the knight lands on square number a(25108) = 21040 of coordinates (73, -57), there is no unvisited square within reach. The sequence then stops, or can be extended by specifying that the knight has to go back on its path until an unvisited square comes within reach, as in A323809.
The least unvisited square at move 25108 is square number 17822 at (67,67). It is however close to the border of the visited region and the knight will visit it in the infinite extension of the sequence shortly after, at move n = 25358. Is there a square that will never be visited in that infinite extension? (Cf. comments in A323809.) - M. F. Hasler, Nov 04 2019

Examples

			The squares are numbered as in the spiral given in A174344 (upside down to get a counterclockwise spiral, but this is irrelevant here).
The knight starts at a(0) = 0 with coordinates (0, 0).
It jumps to a(1) = 9 with coordinates (2, -1): all 8 available squares (+-2, +-1) and (+-1, +-2) are at the same sup-norm and Euclidean distance from the origin, but square number 9 has the smallest number.
		

Crossrefs

Cf. A328929 for the value on the visited square, sup norm of coordinates of a(n).
Cf. A323809 ~ A316328 ~ A316667, A326924, A328908 (variants).
Cf. A174344, A274923, A296030 (coordinates of square number n).

Programs

  • PARI
    {local(coords(n, m=sqrtint(n), k=m\/2)=if(m<=n-=4*k^2, [n-3*k, -k], n>=0, [-k, k-n], n>=-m, [-k-n, k], [k, 3*k+n]), U=[]/*used squares*/, K=vector(8, i, [(-1)^(i\2)<<(i>4), (-1)^i<<(i<5)])/* knight moves*/, pos(x,y)=if(y>=abs(x), 4*y^2-y-x, -x>=abs(y),4*x^2-x-y, -y>=abs(x),(4*y-3)*y+x, (4*x-3)*x+y), t(x, p=pos(x[1],x[2]))=if(p<=U[1]||setsearch(U, p), oo, [vecmax(abs(x)), norml2(x), p]), nxt(p, x=coords(p))=vecsort(apply(K->t(x+K), K))[1][3]); my(A=List(0)/*list of positions*/); for(n=1, oo, U=setunion(U, [A[n]]); while(#U>1&&U[2]==U[1]+1, U=U[^1]); iferr(listput(A, nxt(A[n])), E, break)); print("Index of last term: ", #A-1); A328909(n)=A[n+1];} \\ To compute the infinite extension of the sequence, set en upper limit to the for() loop and replace "break" by listput(A, A[n-1])

Formula

A328929(n) = max(|A174344(a(n))|, |A274923(a(n))|) = sup norm of the coordinates of square a(n).

A268038 List of y-coordinates of point moving in clockwise square spiral.

Original entry on oeis.org

0, 0, -1, -1, -1, 0, 1, 1, 1, 1, 0, -1, -2, -2, -2, -2, -2, -1, 0, 1, 2, 2, 2, 2, 2, 2, 1, 0, -1, -2, -3, -3, -3, -3, -3, -3, -3, -2, -1, 0, 1, 2, 3, 3, 3, 3, 3, 3, 3, 3, 2, 1, 0, -1, -2, -3, -4, -4, -4, -4, -4, -4, -4, -4, -4, -3, -2, -1, 0, 1, 2, 3, 4, 4, 4
Offset: 1

Views

Author

Peter Kagey, Jan 24 2016

Keywords

Comments

This spiral, in either direction, is sometimes called the "Ulam spiral", but "square spiral" is a better name. (Ulam looked at the positions of the primes, but of course the spiral itself must be much older.) - N. J. A. Sloane, Jul 17 2018

Examples

			Sequence gives y-coordinate of the n-th point of the following spiral:
.
  20--21--22--23--24--25
   |                   |
  19   6---7---8---9  26
   |   |           |   |
  18   5   0---1  10  27
   |   |       |   |   |
  17   4---3---2  11  28
   |               |   |
  16--15--14--13--12  29
                       |
  35--34--33--32--31--30
		

Crossrefs

A174344 gives sequence of x-coordinates.
This is the negative of A274923.
The (x,y) coordinates for a point sweeping a quadrant by antidiagonals are (A025581, A002262). - N. J. A. Sloane, Jul 17 2018

Programs

  • Mathematica
    a[n_] := a[n] = If[n==0, 0, a[n-1] + Cos[Mod[Floor[Sqrt[4*(n-1) + 1]], 4]* Pi/2]];
    Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Jun 11 2018, after Seppo Mustonen *)
  • PARI
    L=1; d=-1;
    for(r=1,9,d=-d;k=floor(r/2)*d;for(j=1,L++,print1(k,", "));forstep(j=k-d,-floor((r+1)/2)*d+d,-d,print1(j,", "))) \\ Hugo Pfoertner, Jul 28 2018

A326924 Squares visited by a knight on a spirally numbered board, moving always to the unvisited square closest to the origin.

Original entry on oeis.org

0, 9, 2, 5, 8, 3, 6, 1, 4, 7, 10, 13, 28, 31, 14, 11, 26, 23, 44, 19, 22, 43, 40, 17, 34, 37, 18, 15, 32, 29, 52, 25, 46, 21, 76, 47, 50, 27, 12, 33, 16, 39, 20, 45, 24, 51, 48, 77, 114, 73, 70, 105, 38, 35, 60, 93, 30, 53, 84, 49, 78, 115, 74, 41, 68, 103, 36, 61, 94, 57, 54, 85, 124, 81
Offset: 0

Views

Author

M. F. Hasler, Oct 21 2019

Keywords

Comments

"Closest to the origin" is meant in the sense of Euclidean distance, and in case of a tie, the square coming earliest on the spiral.
Differs from the original A316328 from a(34) = 76 on. See there for more information and other related sequences.
The knight gets trapped at the 22325th move at position (x,y) = (81, -18), from which it can't reach any unvisited square.
Sequence A326922 gives the distance^2 of the square number a(n) visited at move n. - M. F. Hasler, Oct 22 2019
From M. F. Hasler, Nov 04 2019: (Start)
When a(22325) = 25983 at (81, -18) is reached, at distance sqrt(6885) from the origin, the last unvisited square has number 13924, at (-59, 59), distance sqrt(6962) from the origin. This suggests that in an infinite extension (knight moves one step back if no unvisited square is available, cf. A323809) the knight might eventually visit every square. Can this be disproved by a counterexample of a square which will never be visited in the infinite extension? (In A328908 such a counterexample exists even before the knight gets stuck.)
The ratio a(n)/n oscillates between 0.5 and less than 1.7 for all n > 3000, even < 1.5 for all n > 14000, cf. graph of the sequence. What is the superior and inferior limit of this ratio, assuming the infinite extension beyond n = 22325?
(End)

Crossrefs

Cf. A174344, A274923, A296030 (coordinate of square number n).

Programs

  • PARI
    {local(coords(n, m=sqrtint(n), k=m\/2)=if(m<=n-=4*k^2, [n-3*k, -k], n>=0, [-k, k-n], n>=-m, [-k-n, k], [k, 3*k+n]), U=[]/* used squares */, K=vector(8, i, [(-1)^(i\2)<<(i>4), (-1)^i<<(i<5)])/* knight moves */, pos(x,y)=if(y>=abs(x),4*y^2-y-x, -x>=abs(y),4*x^2-x-y, -y>=abs(x),(4*y-3)*y+x, (4*x-3)*x+y), t(x, p=pos(x[1],x[2]))=if(p<=U[1]||setsearch(U, p), oo, [norml2(x),p]), nxt(p, x=coords(p))=vecsort(apply(K->t(x+K), K))[1][2]); my(A=List(0)/*list of positions*/); for(n=1, oo, U=setunion(U, [A[n]]); while(#U>1&&U[2]==U[1]+1, U=U[^1]); iferr(listput(A, nxt(A[n])), E, break)); print("Index of last term: ", #A-1); A326924(n)=A[n+1];} \\ To compute the infinite extension, set upper bound in for() loop and replace "break" by listput(A, A[n-1])

A326918 Squares visited by a knight moving on a single-digit square-spiral numbered board where the knight moves to the smallest numbered unvisited square; the minimum distance from the origin is used if the square numbers are equal; the smallest spiral number ordering is used if the distances are equal.

Original entry on oeis.org

0, 0, 1, 0, 1, 0, 1, 1, 2, 2, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 2, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 2, 2, 1, 1, 0, 2, 3, 2, 2, 1, 3, 1, 1, 1, 2, 2, 3, 2, 3, 1, 4, 3, 5, 6, 1, 1, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 1, 0, 1
Offset: 0

Views

Author

Scott R. Shannon, Oct 21 2019

Keywords

Comments

This sequence uses the same board numbering as A326413, and like that sequence, if the next step encounters two or more squares with the same square number, it then chooses the square which is the closest to the original 0-squared origin. But if two or more squares are found which also have the same distance to the origin, then the square which was first drawn in the spiral numbering is chosen, i.e., the smallest standard spiral numbered square as in A316667.
The sequence is finite. After 1069 steps a square with the number 9 (standard spiral number = 473) is visited, after which all neighboring squares have been visited.
Sequence A326916(n) gives the number of the square visited at step n, i.e., its rank in the spiral, starting with 0, as illustrated, e.g., in A326413. The digit on that square, i.e., a(n) can be obtained through A007376, cf. formula. - M. F. Hasler, Oct 21 2019

Examples

			The squares are numbered using single digits of the spiral number ordering as:
                                .
    2---2---2---1---2---0---2   :
    |                       |   :
    3   1---2---1---1---1   9   3
    |   |               |   |   |
    2   3   4---3---2   0   1   1
    |   |   |       |   |   |   |
    4   1   5   0---1   1   8   3
    |   |   |           |   |   |
    2   4   6---7---8---9   1   0
    |   |                   |   |
    5   1---5---1---6---1---7   3
    |                           |
    2---6---2---7---2---8---2---9
If the knight has a choice of two or more squares in this spiral with the same number which also have the same distance from the origin, then the square with the minimum standard spiral number, as shown in A316667, is chosen.
		

Crossrefs

Cf. A174344, A274923, A296030 (coordinates of the square number n).

Formula

a(n) = A007376(A326916(n)). - M. F. Hasler, Oct 21 2019

A328908 Knight's tour on spirally numbered infinite chessboard, when the knight always jumps on the unvisited square closest to the origin, first according to 1-norm, then 2-norm, then number of the square: a(n) = number of the square visited at the n-th move.

Original entry on oeis.org

0, 9, 2, 5, 8, 3, 6, 1, 4, 7, 10, 13, 28, 31, 14, 11, 26, 23, 44, 19, 22, 43, 40, 17, 34, 37, 18, 15, 32, 29, 52, 25, 46, 21, 76, 47, 50, 27, 12, 33, 16, 39, 20, 45, 24, 51, 48, 77, 114, 73, 70, 105, 38, 35, 60, 93, 30, 53, 84, 49, 78, 115, 74, 41, 68, 103, 36, 61, 94, 57, 54, 85, 124, 175
Offset: 0

Views

Author

M. F. Hasler, Oct 31 2019

Keywords

Comments

Differs from A326924 (where only the 2-norm is considered) from a(73) = 175 on.
The sequence is also finite, when the knight lands on square number a(1092366) there is no unvisited square within reach.
The 1-norm or taxicab distance from the origin of the square a(n) is given in A328928(n).
It appears that this knight's tour would also completely fills the board, if we consider the infinite extension where the knight is allowed to move back on its last step(s) when there's no unvisited square available: no isolated sets of unvisited squares as defined in A323809, seem to occur. Is there a proof or disproof for this? - M. F. Hasler, Nov 04 2019

Examples

			The squares are numbered as in the spiral given in A174344 (upside down to get a counterclockwise spiral, but this is irrelevant here).
The knight starts at a(0) = 0 with coordinates (0, 0).
It jumps to a(1) = 9 with co-ordinates (2, -1): all 8 available squares (+-2, +-1) and (+-1, +-2) are at the same taxicab (2 + 1 = 3) and Euclidean distance (sqrt(2^2 + 1^2) = sqrt(5)) from the origin, but square number 9 has the smallest number.
a(73) = 175 with coordinates (7, 0) is the first destination which is preferred due to the 1-norm (= 7) over A326924(73) = 81 with coordinates (5, -4), having 1-norm 5 + 4 = 9 but Euclidean or 2-norm sqrt(41) smaller than 7.
a(1000) = 816 with coordinates (-10, -14).
a(2000) = 2568 with coordinates (-7, -25).
a(5000) = 4476 with coordinates (21, -33).
a(10000) = 15560 with coordinates (-2, -62).
a(20000) = 19566 with coordinates (-36, 70).
a(50000) = 62092 with coordinates (125, -33).
a(10^5) = 135634 with coordinates (-184, -26), taxicab distance 210 from the origin.
a(200'000) = 259798 with coordinates (47, 255).
a(500'000) = 713534 with coordinates (-68, -422).
a(1'000'000) = 995288 with coordinates (217, 499).
a(1'092'366) = 1165672 with coordinates (188, 540), taxicab norm 728 from the origin, is the last square visited by the knight before there is no unvisited square within reach.
By then the earliest square on the spiral not yet visited is number 629641 at (397, 396), taxicab norm 793, and the unvisited square closest to the origin is number 1794929 at (1, 670), taxicab norm 671.
		

Crossrefs

Cf. A328928 for the "value" (= 1-norm) on the visited square.
Cf. A316328 ~ A316667, A326924, A328909 (variants).
Cf. A174344, A274923, A296030 (coordinates of square number n).

Programs

  • PARI
    {Nmax=1e5;/* Full seq. with > 10^6 terms takes long to compute. */ local( K=[[(-1)^(i\2)<<(i>4),(-1)^i<<(i<5)]|i<-[1..8]], pos(x,y)=if(y>=abs(x),4*y^2-y-x,-x>=abs(y),4*x^2-x-y,-y>=abs(x),(4*y-3)*y+x,(4*x-3)*x+y), coords(n, m=sqrtint(n), k=m\/2)=if(m<=n-=4*k^2, [n-3*k, -k], n>=0, [-k, k-n], n>=-m, [-k-n, k], [k, 3*k+n]), t(x, p=pos(x[1],x[2]))=if(pt(x+K), K))[1][3], U=0,Umin=0); my(A=List(0)); for(n=1, Nmax, U+=1<<(A[n]-Umin); while(bittest(U,0), U>>=1;Umin++); iferr(listput(A, nxt(A[n])), E, break)); print("Index of the last term: ", #A-1); A328908(n)=A[n+1];}

Formula

A328928(n) = |A174344(a(n))| + |A274923(a(n))|, the 1-norm (or taxicab distance) of the square visited at the n-th step.

A307834 Counterclockwise square spiral constructed by greedy algorithm such that the sum of the values of any two vertically or horizontally adjacent cells is unique.

Original entry on oeis.org

0, 0, 1, 2, 2, 5, 1, 8, 10, 1, 12, 13, 2, 15, 17, 18, 3, 20, 19, 25, 2, 27, 22, 21, 32, 2, 35, 26, 28, 38, 4, 43, 31, 31, 32, 48, 4, 52, 37, 39, 34, 58, 6, 63, 40, 46, 49, 39, 70, 5, 76, 42, 56, 51, 45, 80, 5, 86, 44, 62, 66, 67, 46, 96, 5, 100, 50, 71, 72, 76
Offset: 0

Views

Author

Rémy Sigrist, May 01 2019

Keywords

Comments

Visually, we have a superposition of two images that we can separate by considering the parity of the sum of the x and y coordinates (see illustrations in Links section).

Examples

			The spiral begins:
    8--158---69--111---91---95---93--110---61--147----6
    |                                                 |
  164    5---96---46---67---66---62---44---86----5  140
    |    |                                       |    |
   67  100    4---48---32---31---31---43----4   80   64
    |    |    |                             |    |    |
  123   50   52    3---18---17---15----2   38   45   96
    |    |    |    |                   |    |    |    |
   97   71   37   20    2----2----1   13   28   51   88
    |    |    |    |    |         |    |    |    |    |
  102   72   39   19    5    0----0   12   26   56   82
    |    |    |    |    |              |    |    |    |
   99   76   34   25    1----8---10----1   35   42   94
    |    |    |    |                        |    |    |
  123   56   58    2---27---22---21---32----2   76   55
    |    |    |                                  |    |
   71  106    6---63---40---46---49---39---70----5  130
    |    |                                            |
  172    9--110---54---80---76---75---84---56--122----7
    |
   10--182---73--133--109--117--120--112--141---76--193
		

Crossrefs

See A307838 for the multiplicative variant.

Programs

  • PARI
    See Links section.

A326916 Trajectory of the knight's tour for choice of the square with the lowest digit, then closest to the origin, then first in the spiral.

Original entry on oeis.org

0, 11, 14, 31, 28, 51, 10, 13, 34, 95, 190, 247, 312, 385, 244, 133, 242, 239, 376, 301, 372, 233, 370, 295, 232, 173, 228, 367, 230, 171, 226, 223, 358, 285, 220, 355, 282, 217, 352, 283, 218, 115, 44, 73, 20, 71, 40, 17, 36, 15, 18, 3, 12, 1, 22, 75, 46, 117, 48, 77, 24, 79, 50, 81, 118, 221, 286, 225, 292, 229, 296, 451, 298, 235
Offset: 0

Views

Author

M. F. Hasler, Oct 21 2019

Keywords

Comments

A variant of Angelini's "Kneil's Knumberphile Knight", inspired by Sloane's "The Trapped Knight", cf. A316328 and links:
Consider an infinite chess board with squares numbered along the infinite square spiral starting with 0 at the origin (as in A174344, A274923 and A296030). The squares are filled with successive digits of the integers: 0, 1, 2, ..., 9, 1, 0, 1, 1, ... (= A007376 starting with 0). The knight moves at each step to the yet unvisited square with the lowest digit on it, and in case of a tie, the one closest to the origin, first by Euclidean distance, then by appearance on the spiral (i.e., number of the square). This sequence lists the number of the square visited in the n-th move, if the knight starts at the origin, viz a(0) = 0.
It turns out that following these rules, the knight gets trapped at the 1070th move, when he can't reach any unvisited square.
See A326918 for the sequence of visited digits, given as A007376(a(n)).
Many squares, e.g., 2: (1,1), 4: (-1,1), 5: (-1,0), 6: (-1,-1), 7: (0,-1), 8: (1,-1), 9: (2,-1), ..., will never be visited, even in the infinite extension of the sequence where the knight can move back if it gets trapped, in order to resume with a new unvisited square, as in A323809. - M. F. Hasler, Nov 08 2019

Crossrefs

Programs

  • PARI
    {L326916=List(0) /* list of terms */; U326916=1 /* bitmap of used squares */; local( K=vector(8, i, [(-1)^(i\2)<<(i>4), (-1)^i<<(i<5)])/* knight moves */, coords(n, m=sqrtint(n), k=m\/2)=if(m<=n-=4*k^2, [n-3*k, -k], n>=0, [-k, k-n], n>=-m, [-k-n, k], [k, 3*k+n]), pos(x, y)=if(y>=abs(x), 4*y^2-y-x, -x>=abs(y), 4*x^2-x-y, -y>=abs(x), (4*y-3)*y+x, (4*x-3)*x+y), val(x, p=pos(x[1],x[2]))=if(bittest(U326916, p), oo, [A007376(p), norml2(x), p])); iferr( for(n=1,oo, my(x=coords(L326916[n])); U326916+=1<A326916(n)=L326916[n+1]} \\ Requires function A007376; defines function A326916.

A343640 Coordinate triples (x(n), y(n), z(n); n >= 0) of the 3D square spiral filling space with shells of increasing radius for the sup-norm, in turn filled by squares extending from one pole to the opposite one.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, -1, 1, 1, -1, 0, 1, -1, -1, 1, 0, -1, 1, 1, -1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, -1, 1, 0, -1, 0, 0, -1, -1, 0, 0, -1, 0, 1, -1, 0, 1, 0, -1, 1, 1, -1, 0, 1, -1, -1, 1, -1, -1, 0, -1, -1, -1, -1, 0, -1, -1, 1, -1, -1, 0, 0, -1, 0, 0, -2, 1, 0, -2, 1, 1, -2, 0, 1, -2, -1, 1, -2, -1, 0, -2, -1, -1, -2, 0, -1, -2, 1, -1, -2
Offset: 0

Views

Author

M. F. Hasler, Apr 28 2021

Keywords

Comments

This is a 3D generalization of the 2D square spiral and could be used to produce a 3D variant of Ulam's prime spiral.
See A343630 for an analog using the Euclidean or 2-norm instead of the sup- or oo-norm used here, so points are partitioned in spheres and circles instead of squares and cubes here.
The integer lattice points, Z^3, are listed in order of increasing sup norm R = max(|x|, |y|, |z|). Each "sphere" or shell of given radius R is filled starting at the North or South pole using concentric squares on the top and bottom face and squares of fixed size (2R+1) X (2R+1) at intermediate z-coordinates. Each square (circle for the sup-norm) is filled in the sense of increasing longitude, where the positive x axis corresponds to longitude 0, i.e., the points (r,0,z), (0,r,z), (-r,0,z) and (0,-r,z) are visited in this order. The z-values are alternatively increasing and decreasing (so over a period of two shells they follow the same rectangle-wave shape as the x-values do over the period of each square).
The sequence can be seen as a table with row length of 3, where each row corresponds to the (x,y,z)-coordinates of one point (then the three columns are A343641, A343642 and A343643), or as a table with row lengths 3*A010014, where A010014(r) is the number of points with sup-norm r.
There are (2n+1)^3 integer lattice points with sup norm <= n. Therefore, the point number n (where 0 is the origin) is in the shell r = round(n^(1/3)/2) = floor(...+1/2). Within shell r, which starts with the point number (2r-1)^3 (except for r=0), the first and last (2r+1)^2 points are on square spirals on the top and bottom faces, and the other points are on 2r-1 squares forming "belts" of 8r points each, on the side faces of the cube.

Examples

			Shell r = 0 is the origin, {(0,0,0)}.
Shell r = 1 contains the 3*3 + 4*2 + 3*3 = 26 points with oo-norm 1, i.e., all points with coordinates within {-1, 0, 1} except for the origin. They are listed in a square spiral starting at the North Pole: (0,0,1), (1,0,1), (1,1,1), (0,1,1), (-1,1,1), (-1,0,1), (-1,-1,1), (0,-1,1), (1,-1,1); then on the equator:  (1,0,0), (1,1,0), (0,1,0), (-1,1,0), (-1,0,0), (-1,-1,0), (0,-1,0), (1,-1,0), and then on the South face using an inward spiral: (1,0,-1), (1,1,-1), (0,1,-1), (-1,1,-1), (-1,0,-1), (-1,-1,-1), (0,-1,-1), (1,-1,-1), (0,0,-1).
Since there are no empty shells, the z-coordinate is always increasing for even r and decreasing for odd r.
		

Crossrefs

Cf. A343641, A343642, A343643 (list of x, y resp. z-coordinates only).
Cf. A343631, A343632, A343633 (variant using the Euclidean norm => circle shaped spirals), A342561, A343632, A342563 (another variant).
Cf. A010014 (number of points on a shell with given radius), A016755.
Cf. A174344, A268038, A274923 (2-dimensional square spiral).

Programs

  • PARI
    A343640_row(n)={local(L=List(), a(r, z, d=I)= if(r, for(i=1,8*r, listput(L,[real(r),imag(r),z]); r+=d; abs(real(r))==abs(imag(r)) && d*=I), listput(L,[0,0,z])), s=(-1)^n /* flip South <-> North for odd n */); /* main prog: (1) square spiral on South face from center to board */ for(d=!n,n, a(d,-s*n)); /* (2) "equatorial(?) bands" from South to North */ for(z=1-n,n-1, a(n,s*z)); /* (3) square spiral on North face ending in pole */ for(d=0,n, a(n-d,s*n)); Vec(L)} \\ row n of the table = list of points (x,y,z) in the shell n, i.e., with sup norm n. [Missing "s*" in a(n,s*z) added on May 27 2021]
    A343640_vec=concat([A343640_row(r) | r<-[0..2]]) \\ From r=0 up to n there are (2n+1)^3 points with 3 coordinates each!
Previous Showing 11-20 of 81 results. Next