A129511
Numbers such that all differences between distinct divisors occur exactly once.
Original entry on oeis.org
1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 14, 16, 17, 19, 21, 22, 23, 25, 26, 27, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 43, 44, 46, 47, 49, 50, 51, 52, 53, 55, 57, 58, 59, 61, 62, 64, 65, 67, 68, 69, 71, 73, 74, 76, 77, 79, 81, 82, 83, 85, 86, 87, 89, 92, 93, 94, 95, 97, 98, 101, 103
Offset: 1
See example for a(33)=44 in A129510.
-
import Data.List.Ordered (isect, union)
a129511 n = a129511_list !! (n-1)
a129511_list = filter (f [] . a027750_row') [1..] where
f [] = True
f zs (d:ds) = null (dds `isect` zs) && f (dds `union` zs) ds
where dds = map (subtract d) ds
-- Reinhard Zumkeller, Jun 25 2015
-
Select[Range[103],CountDistinct[Differences /@ Subsets[Divisors[#], {2}]]==Length[Flatten[Differences /@ Subsets[Divisors[#], {2}]]]&] (* James C. McMahon, Jan 21 2025 *)
A298855
Squarefree semiprimes p*q for which the symmetric representation of sigma(p*q) has four parts, in increasing order.
Original entry on oeis.org
21, 33, 39, 51, 55, 57, 65, 69, 85, 87, 93, 95, 111, 115, 119, 123, 129, 133, 141, 145, 155, 159, 161, 177, 183, 185, 201, 203, 205, 213, 215, 217, 219, 235, 237, 249, 253, 259, 265, 267, 287, 291, 295, 301, 303, 305, 309, 319, 321, 327, 329, 335, 339, 341, 355, 365, 371, 377, 381, 393, 395
Offset: 1
21=3*7 is the smallest number in the sequence since 2*3<7.
1081=23*(2*23+1) is in the sequence; its central parts meet at 751 on the diagonal.
The semiprimes p*q can be arranged as an irregular triangle with rows and columns labeled by the respective odd primes:
q\p| 3 5 7 11 13 17 19 23
---+---------------------------------------
7 | 21
11 | 33 55
13 | 39 65
17 | 51 85 119
19 | 57 95 133
23 | 69 115 161 253
29 | 87 145 203 319 377
31 | 93 155 217 341 403
37 | 111 185 259 407 481 629
41 | 123 205 287 451 533 697 779
43 | 129 215 301 473 559 731 817
47 | 141 235 329 517 611 799 893 1081
Cf.
A001358,
A005384,
A005385,
A006881,
A046388,
A068443,
A156592,
A174905,
A237048,
A237270,
A237593,
A240542,
A241008,
A264104,
A280107,
A298856.
-
(* Function a237270[] is defined in A237270 *)
a006881Q[n_] := Module[{f=FactorInteger[n]}, Length[f]==2 && AllTrue[Last[Transpose[f]], #==1&]]
a298855[m_, n_] := Select[Range[m, n], a006881Q[#] && Length[a237270[#]]==4 &]
a298855[1, 400] (* data *)
(* column for prime p through number n *)
stalk[n_, p_] := Select[a298855[1, n], First[First[FactorInteger[#]]]==p&]
A379461
Irregular triangle read by rows in which row n lists the divisors m of n such that there is a divisor d of n with d < m < 2*d, or 0 if such divisors do not exist.
Original entry on oeis.org
0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 3, 4, 6, 0, 0, 5, 0, 0, 3, 9, 0, 5, 0, 0, 0, 3, 4, 6, 8, 12, 0, 0, 0, 7, 0, 3, 5, 6, 10, 15, 0, 0, 0, 0, 7, 3, 4, 6, 9, 12, 18, 0, 0, 0, 5, 8, 10, 0, 3, 7, 21, 0, 0, 5, 9, 15, 0, 0, 3, 4, 6, 8, 12, 16, 24, 0, 0, 0, 0, 0, 3, 9, 27, 0
Offset: 1
Triangle begins:
0;
0;
0;
0;
0;
3;
0;
0;
0;
0;
0;
3, 4, 6;
0;
0;
5;
0;
0;
3, 9;
0;
5;
...
From _Omar E. Pol_, Apr 19 2025: (Start)
For n = 12 there are three divisors m of 12 such that there is a divisor d of 12 with d < m < 2*d. Those divisors are 3, 4 and 6 as shown below:
d < m < 2*d
--------------------
1 2
2 3 4
3 4 6
4 6 8
6 12
12 24
.
So the 12th row of the triangle is [3, 4, 6]. (End)
Cf.
A005279,
A027750,
A174903,
A174905,
A182469,
A237271,
A379288,
A379374,
A379379,
A379384,
A383209.
-
row[n_] := Module[{d = Partition[Divisors[n], 2, 1], e}, e = Select[d, #[[2]] < 2*#[[1]] &][[;; , 2]]; If[e == {}, {0}, e]]; Table[row[n], {n, 1, 55}] // Flatten (* Amiram Eldar, Dec 23 2024 *)
A347273
Number of positive widths in the symmetric representation of sigma(n).
Original entry on oeis.org
1, 3, 4, 7, 6, 11, 8, 15, 13, 18, 12, 23, 14, 24, 23, 31, 18, 35, 20, 39, 32, 36, 24, 47, 31, 42, 40, 55, 30, 59, 32, 63, 48, 54, 45, 71, 38, 60, 56, 79, 42, 83, 44, 84, 73, 72, 48, 95, 57, 93, 72, 98, 54, 107, 72, 111
Offset: 1
Cf.
A000040,
A005408,
A174905,
A174973,
A196020,
A235791,
A236106,
A237270,
A237271,
A237591,
A237593,
A238443,
A249351 (widths),
A253258,
A347361.
A352696
a(n) = k if the binary representation of k has a 1 (0) exactly where a 1 in the n-th row of A237048 occurs at an odd (even) position, reading from left to right.
Original entry on oeis.org
1, 1, 2, 1, 2, 3, 2, 1, 5, 2, 2, 3, 2, 2, 11, 1, 2, 6, 2, 3, 10, 2, 2, 3, 5, 2, 10, 3, 2, 13, 2, 1, 10, 2, 11, 6, 2, 2, 10, 3, 2, 13, 2, 2, 45, 2, 2, 3, 5, 5, 10, 2, 2, 13, 10, 3, 10, 2, 2, 14, 2, 2, 43, 1, 10, 13, 2, 2, 10, 11, 2, 7, 2, 2, 44, 2, 11, 12, 2, 3, 21, 2, 2, 14, 10
Offset: 1
Sequence values for the first 4 powers of 3: {a(1), a(3), a(9), a(27)} = {1, 2, 5, 10} = {1, 10, 101, 1010}.
Table for a(1..16), a(27) and a(28) together with their lists of the base-2 representation, of the odd/even positions of 1's in the n-th row of A237048, and of the sizes of the parts in SRS(n):
n a(n) odd/even A237048 A237270
1 1 {1} {1} {1}
2 1 {1} {1} {3}
3 2 {1,0} {1,1} {2,2}
4 1 {1} {1,0} {7}
5 2 {1,0} {1,1} {3,3}
6 3 {1,1} {1,0,1} {12}
7 2 {1,0} {1,1,0} {4,4}
8 1 {1} {1,0,0} {15}
9 5 {1,0,1} {1,1,1} {5,3,5}
10 2 {1,0} {1,0,0,1} {9,9}
11 2 {1,0} {1,1,0,0} {6,6}
12 3 {1,1} {1,0,1,0} {28}
13 2 {1,0} {1,1,0,0} {7,7}
14 2 {1,0} {1,0,0,1} {12,12}
15 11 {1,0,1,1} {1,1,1,0,1} {8,8,8}
16 1 {1} {1,0,0,0,0} {31}
...
27 10 {1,0,1,0} {1,1,1,0,0,1} {14,6,6,14}
28 3 {1,1} {1,0,0,0,0,0,1} {56}
...
Cf.
A000975,
A061854,
A174905,
A174973,
A235791,
A237048,
A237270,
A237591,
A237593,
A238443,
A239929,
A247687,
A352030.
-
(* function a237048[ ] is defined in A237048 *)
b237048[n_] := Fold[2#1+Mod[#2, 2]&, 0, Flatten[Position[a237048[n], 1]]]
a352696[n_] := Map[b237048, Range[n]]
a352696[85]
A368087
Numbers of the form 2^k * p^s with k>=0, s>=0, p>2 prime and 2^(k+1) < p.
Original entry on oeis.org
1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 14, 16, 17, 19, 22, 23, 25, 26, 27, 29, 31, 32, 34, 37, 38, 41, 43, 44, 46, 47, 49, 50, 52, 53, 58, 59, 61, 62, 64, 67, 68, 71, 73, 74, 76, 79, 81, 82, 83, 86, 89, 92, 94, 97, 98, 101, 103, 106, 107, 109, 113, 116, 118, 121, 122, 124, 125, 127, 128
Offset: 1
14 = 2*7 is a term since 4 < 7.
44 = 4*11 is a term since 8 < 11.
-
propQ[n_] := Module[{fL=FactorInteger[n]}, Length[fL]==1||(Length[fL]==2&&fL[[1, 1]]==2&&fL[[1, 1]]^(fL[[1, 2]]+1)
A375611
Numbers k whose symmetric representation of sigma(k) has at least a part with maximum width 2.
Original entry on oeis.org
6, 12, 15, 18, 20, 24, 28, 30, 35, 36, 40, 42, 45, 48, 54, 56, 63, 66, 70, 75, 77, 78, 80, 88, 91, 96, 99, 100, 102, 104, 105, 108, 110, 112, 114, 117, 130, 132, 135, 138, 143, 150, 153, 154, 156, 160, 162, 165, 170, 174, 175, 176, 182, 186, 187, 189, 190, 192, 195, 196, 200
Offset: 1
a(4) = 18 has width pattern 1 2 1 2 1 in its symmetric representation of sigma consisting of a single part, and row 18 in the triangle of A249223 is 1 1 2 1 1.
a(9) = 35 has width pattern 1 0 1 2 1 0 1 in its symmetric representation of sigma consisting of 3 parts, and row 35 in the triangle of A249223 is 1 0 0 0 1 1 2.
Irregular triangle of rows a(n) in triangle of A341970, i.e. of positions of 1's in triangle of A237048, and for the corresponding widths to the diagonal in triangle of A341969:
a(n)| row in A341970 left half of row in A341969
6 | 1 3 1 2
12 | 1 3 1 2
15 | 1 2 3 5 1 0 1 2
18 | 1 3 4 1 2 1
20 | 1 5 1 2
24 | 1 3 1 2
28 | 1 7 1 2
30 | 1 3 4 5 1 2 1 2
35 | 1 2 5 7 1 0 1 2
36 | 1 3 8 1 2 1
...
-
eP[n_] := If[EvenQ[n], FactorInteger[n][[1, 2]], 0]+1
sDiv[n_] := Module[{d=Select[Divisors[n], OddQ]}, Select[Union[d, d*2^eP[n]], #<=row[n]&]]
mW2Q[n_] := Max[FoldWhileList[#1+If[OddQ[#2], 1, -1]&, sDiv[n], #1<=2&]]==2
a375611[m_, n_] := Select[Range[m, n], mW2Q]
a375611[1, 200]
A381137
Lexicographically earliest sequence of distinct positive integers such that no 3 terms are in harmonic progression.
Original entry on oeis.org
1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 19, 21, 22, 23, 25, 26, 27, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 67, 68, 69, 70, 71, 73, 74, 76, 79, 81, 82, 83, 85, 86
Offset: 1
6 is not a term in the sequence because it would form a harmonic progression with 2 and 3, which occurred earlier. The progression (1/6, 1/3, 1/2) has common difference 1/6.
Analogous sequences:
A003278 (for arithmetic progressions),
A000452 (for geometric progressions).
Comments