cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A364327 Number of endofunctions on [n] such that the number of elements that are mapped to i is either 0 or a divisor of i.

Original entry on oeis.org

1, 1, 3, 13, 115, 851, 13431, 144516, 2782571, 47046307, 1107742273, 19263747713, 657152726011, 13657313316986, 451605697223110, 13377063396461138, 531234399267707419, 14563460779785318719, 721703507708044677945, 22141894282020163910406, 1123287408943765640907425
Offset: 0

Views

Author

Alois P. Heinz, Jul 18 2023

Keywords

Examples

			a(0) = 1: ().
a(1) = 1: (1).
a(2) = 3: (22), (21), (12).
a(3) = 13: (333), (322), (232), (223), (321), (231), (213), (312), (132), (123), (221), (212), (122).
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, b(n, i-1)+add(
         `if`(d>n, 0, b(n-d, i-1)*binomial(n, d)), d=numtheory[divisors](i))))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..23);

A364328 Number of endofunctions on [n] such that the number of elements that are mapped to i is either 0 or a prime divisor of i.

Original entry on oeis.org

1, 0, 1, 1, 6, 21, 110, 904, 4312, 74400, 731412, 5600761, 128196024, 792051157, 18696610816, 264267572121, 7136433698464, 57948743342529, 2228312959187256, 22463157401776612, 681974906329502904, 15395459281239915282, 463374873030990445252, 6091833036158810701465
Offset: 0

Views

Author

Alois P. Heinz, Jul 18 2023

Keywords

Examples

			a(0) = 1: ().
a(2) = 1: (22).
a(3) = 1: (333).
a(4) = 6: (4422), (4242), (4224), (2442), (2424), (2244).
a(5) = 21: (55555), (44333), (43433), (43343), (43334), (34433), (34343), (34334), (33443), (33434), (33344), (33322), (33232), (33223), (32332), (32323), (32233), (23332), (23323), (23233), (22333).
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, b(n, i-1)+add(
         `if`(d>n, 0, b(n-d, i-1)*binomial(n, d)), d=numtheory[factorset](i))))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..23);

A330074 Expansion of e.g.f. Product_{k>=1} (1 - log(1 - x^k)).

Original entry on oeis.org

1, 1, 3, 14, 78, 544, 4560, 42468, 451584, 5382144, 69737760, 985265280, 15204119040, 249602065920, 4398839827200, 82834744849920, 1646970433920000, 34626184595251200, 769149445849989120, 17896198498368583680, 437123791096022016000, 11171177571932111462400
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 30 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 21; CoefficientList[Series[Product[1 - Log[1 - x^k], {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
    nmax = 21; CoefficientList[Series[Product[(1 + Sum[x^(i j)/i, {i, 1, nmax}]), {j, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!

Formula

E.g.f.: Product_{j>=1} (1 + Sum_{i>=1} x^(i*j) / i).

A330075 Expansion of e.g.f. Product_{k>=1} (1 - log(1 - x^k) / k).

Original entry on oeis.org

1, 1, 2, 7, 32, 168, 1184, 8622, 77216, 747576, 8185392, 93054960, 1264465872, 16974221184, 254355732864, 4069961945280, 70258008510720, 1228263760984320, 24025502406873600, 470522155226595840, 10095034628228958720, 222277023267825254400, 5144511652272759029760
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 30 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 22; CoefficientList[Series[Product[1 - Log[1 - x^k]/k, {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
    nmax = 22; CoefficientList[Series[Product[(1 + Sum[x^(i j)/(i j), {i, 1, nmax}]), {j, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!

Formula

E.g.f.: Product_{j>=1} (1 + Sum_{i>=1} x^(i*j) / (i*j)).
Previous Showing 11-14 of 14 results.