cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 23 results. Next

A179296 Decimal expansion of circumradius of a regular dodecahedron with edge length 1.

Original entry on oeis.org

1, 4, 0, 1, 2, 5, 8, 5, 3, 8, 4, 4, 4, 0, 7, 3, 5, 4, 4, 6, 7, 6, 6, 7, 7, 9, 3, 5, 3, 2, 2, 0, 6, 7, 9, 9, 4, 4, 4, 3, 9, 3, 1, 7, 3, 9, 7, 7, 5, 4, 9, 2, 8, 6, 3, 6, 6, 0, 8, 4, 5, 1, 8, 6, 3, 9, 1, 3, 5, 4, 0, 2, 7, 2, 1, 1, 4, 4, 4, 7, 6, 7, 6, 5, 0, 1, 0, 8, 3, 9, 0, 9, 0, 3, 9, 8, 0, 5, 2, 3, 3, 9, 7, 9, 8
Offset: 1

Views

Author

Keywords

Comments

Dodecahedron: A three-dimensional figure with 12 faces, 20 vertices, and 30 edges.
Appears as a coordinate in a degree-7 quadrature formula on 12 points over the unit circle [Stroud & Secrest]. - R. J. Mathar, Oct 12 2011

Examples

			1.40125853844407354467667793532206799444393173977549286366084518639135...
		

References

  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, ยง12.4 Theorems and Formulas (Solid Geometry), p. 451.

Crossrefs

Cf. Platonic solids circumradii: A010503 (octahedron), A010527 (cube), A019881 (icosahedron), A187110 (tetrahedron). - Stanislav Sykora, Feb 10 2014

Programs

  • Mathematica
    RealDigits[(Sqrt[3]+Sqrt[15])/4, 10, 175][[1]]
  • PARI
    (1+sqrt(5))*sqrt(3)/4 \\ Stefano Spezia, Jan 27 2025

Formula

Equals (sqrt(3) + sqrt(15))/4 = sqrt((9 + 3*sqrt(5))/8).
The minimal polynomial is 16*x^4 - 36*x^2 + 9. - Joerg Arndt, Feb 05 2014
Equals (sqrt(3)/2) * phi = A010527 * A001622. - Amiram Eldar, Jun 02 2023

A179591 Decimal expansion of the surface area of pentagonal cupola with edge length 1.

Original entry on oeis.org

1, 6, 5, 7, 9, 7, 4, 9, 7, 5, 2, 9, 8, 8, 1, 9, 7, 0, 4, 6, 0, 9, 4, 0, 4, 6, 3, 4, 4, 3, 6, 3, 2, 2, 4, 6, 1, 8, 1, 0, 2, 6, 3, 6, 0, 9, 6, 1, 1, 7, 6, 5, 5, 1, 8, 1, 8, 7, 4, 7, 4, 4, 0, 5, 7, 2, 7, 5, 9, 4, 3, 4, 8, 4, 5, 8, 2, 6, 9, 3, 5, 7, 3, 8, 2, 0, 3, 5, 8, 2, 7, 9, 0, 0, 1, 9, 1, 2, 0, 4, 8, 2, 6, 8, 1
Offset: 2

Views

Author

Keywords

Comments

Pentagonal cupola: 15 vertices, 25 edges, and 12 faces.

Examples

			16.5797497529881970460940463443632246181026360961176551818747440...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[(20+Sqrt[10*(80+31*Sqrt[5]+Sqrt[2175+930*Sqrt[5]])])/4,200]]

Formula

Digits of (20+sqrt(10*(80+31*sqrt(5)+sqrt(2175+930*sqrt(5)))))/4.

A179588 Decimal expansion of the surface area of square cupola with edge length 1.

Original entry on oeis.org

1, 1, 5, 6, 0, 4, 7, 7, 9, 3, 2, 3, 1, 5, 0, 6, 7, 3, 9, 1, 1, 3, 0, 8, 2, 3, 7, 8, 9, 9, 2, 5, 2, 6, 8, 5, 2, 4, 0, 8, 2, 1, 4, 9, 0, 0, 4, 5, 6, 4, 2, 7, 6, 7, 7, 4, 4, 0, 9, 1, 6, 6, 4, 5, 5, 4, 3, 3, 3, 9, 7, 9, 7, 3, 8, 3, 3, 0, 1, 4, 1, 1, 4, 7, 8, 1, 9, 2, 1, 2, 5, 5, 4, 1, 2, 5, 3, 1, 7, 2, 1, 1, 4, 5, 6
Offset: 2

Views

Author

Keywords

Comments

Square cupola: 12 vertices, 20 edges, and 10 faces.

Examples

			11.56047793231506739113082378992526852408214900456427677440...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[7+2*Sqrt[2]+Sqrt[3],200]]

Formula

Digits of 7 + 2*sqrt(2) + sqrt(3).

A179637 Decimal expansion of the surface area of pentagonal rotunda with edge length 1.

Original entry on oeis.org

2, 2, 3, 4, 7, 2, 0, 0, 2, 6, 5, 3, 9, 4, 1, 2, 8, 2, 7, 6, 7, 9, 8, 4, 1, 4, 1, 5, 8, 1, 8, 8, 6, 1, 3, 0, 7, 3, 8, 1, 8, 0, 1, 3, 5, 1, 3, 4, 3, 1, 6, 2, 2, 6, 1, 2, 9, 7, 9, 9, 7, 6, 3, 1, 6, 7, 1, 0, 2, 0, 4, 7, 1, 6, 7, 6, 3, 5, 2, 4, 7, 7, 6, 8, 3, 3, 9, 9, 7, 2, 1, 9, 3, 8, 6, 4, 1, 1, 4, 7, 0, 3, 3, 2, 0
Offset: 2

Views

Author

Keywords

Comments

Pentagonal rotunda: 20 vertices, 35 edges, and 17 faces.

Examples

			22.3472002653941282767984141581886130738180135134316226129799763167102...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[Sqrt[5*(145+58*Sqrt[5]+2*Sqrt[30*(65+29*Sqrt[5])])]/2,200]]

Formula

Digits of sqrt(5*(145+58*sqrt(5)+2*sqrt(30*(65+29*sqrt(5)))))/2.

Extensions

Offset corrected by R. J. Mathar, Aug 15 2010

A185093 Decimal expansion of the volume of small rhombicosidodecahedron with edge = 1.

Original entry on oeis.org

4, 1, 6, 1, 5, 3, 2, 3, 7, 8, 2, 4, 9, 7, 9, 6, 7, 0, 6, 5, 2, 8, 8, 6, 7, 8, 7, 9, 7, 7, 3, 5, 6, 7, 0, 2, 7, 5, 9, 2, 5, 9, 7, 7, 4, 7, 6, 2, 4, 4, 7, 4, 8, 6, 6, 7, 9, 5, 2, 0, 0, 6, 7, 0, 5, 6, 3, 5, 0, 3, 5, 6, 1, 4, 4, 9, 8, 7, 8, 0, 6, 9, 4, 3, 3, 9
Offset: 2

Views

Author

Keywords

Comments

Small Rhombicosidodecahedron: 62 faces, 60 vertices, and 120 edges.
Surface Area = 30+sqrt(30*(10+3*sqrt(5)+sqrt(75+30*sqrt(5)))) = 59.30598284491...
Circumradius = sqrt(11+4*sqrt(5))/2 = 2.23295050941569004950041538324968277293...
Midradius = sqrt(10+4*sqrt(5))/2 = 2.17625089948282151110005286599776788019807...
Quadratic number with denominator 3 and minimal polynomial 9x^2 - 360x - 605. - Charles R Greathouse IV, Apr 25 2016

Examples

			41.6153237824979670652886787977356702759259774762447486679520...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[20 + (29*Sqrt[5])/3, 200]][[1]]
    RealDigits[PolyhedronData["Rhombicosidodecahedron","Volume"],10,100][[1]] (* Harvey P. Dale, Aug 04 2025 *)
  • PARI
    29*sqrt(5)/3+20 \\ Charles R Greathouse IV, Oct 01 2012

Extensions

Offset changed by Georg Fischer, Jul 29 2021

A179589 Decimal expansion of the circumradius of square cupola with edge length 1.

Original entry on oeis.org

1, 3, 9, 8, 9, 6, 6, 3, 2, 5, 9, 6, 5, 9, 0, 6, 7, 0, 2, 0, 3, 1, 5, 4, 0, 5, 3, 9, 4, 3, 1, 9, 9, 8, 7, 6, 4, 6, 7, 3, 5, 2, 2, 5, 6, 3, 8, 6, 6, 2, 3, 8, 8, 7, 9, 9, 3, 0, 9, 3, 6, 3, 2, 3, 1, 5, 0, 3, 7, 3, 5, 9, 2, 0, 3, 7, 9, 8, 0, 2, 9, 9, 1, 1, 4, 8, 2, 8, 3, 0, 0, 5, 0, 1, 4, 4, 6, 8, 0, 3, 0, 4, 2, 9, 4
Offset: 1

Views

Author

Keywords

Comments

Square cupola: 12 vertices, 20 edges, and 10 faces.

Examples

			1.398966325965906702031540539431998764673522563866238879930...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[Sqrt[5+2*Sqrt[2]]/2,200]]

Formula

Digits of sqrt(5+2*sqrt(2))/2.

A179638 Decimal expansion of the volume of gyroelongated square pyramid with edge length 1.

Original entry on oeis.org

1, 1, 9, 2, 7, 0, 2, 2, 4, 2, 2, 3, 2, 2, 3, 2, 5, 5, 9, 0, 6, 0, 1, 9, 8, 4, 2, 8, 3, 7, 7, 2, 5, 1, 5, 8, 1, 5, 5, 2, 6, 2, 5, 5, 1, 8, 2, 8, 8, 6, 2, 0, 1, 5, 7, 0, 7, 7, 9, 3, 1, 4, 2, 1, 8, 8, 8, 2, 2, 7, 4, 7, 2, 4, 5, 5, 2, 5, 8, 3, 8, 6, 3, 0, 8, 2, 0, 7, 7, 0, 6, 7, 0, 0, 1, 8, 1, 1, 7, 7, 4, 7, 6, 3, 8
Offset: 1

Views

Author

Keywords

Comments

Gyroelongated square pyramid: 9 vertices, 20 edges, and 13 faces.

Examples

			1.19270224223223255906019842837725158155262551828862015707793142188822...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[(Sqrt[2]+2*Sqrt[4+3*Sqrt[2]])/6,200]]

Formula

Digits of (sqrt(2)+2 sqrt(4+3 sqrt(2)))/6.

A179593 Decimal expansion of the volume of pentagonal rotunda with edge length 1.

Original entry on oeis.org

6, 9, 1, 7, 7, 6, 2, 9, 6, 8, 1, 2, 4, 7, 0, 2, 0, 6, 9, 9, 1, 2, 9, 9, 6, 0, 3, 0, 7, 0, 2, 6, 4, 1, 3, 3, 3, 5, 4, 0, 8, 7, 6, 0, 0, 9, 4, 4, 9, 6, 6, 1, 4, 4, 2, 7, 1, 7, 1, 0, 4, 4, 3, 0, 9, 9, 8, 2, 3, 7, 9, 7, 7, 9, 8, 6, 8, 9, 0, 2, 7, 4, 1, 7, 0, 4, 2, 0, 4, 1, 1, 8, 6, 9, 9, 4, 1, 5, 5, 6, 2, 0, 6, 8, 0
Offset: 1

Views

Author

Keywords

Comments

Pentagonal rotunda: 20 vertices, 35 edges, and 17 faces.

Examples

			6.91776296812470206991299603070264133354087600944966144271710443099823...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[(45+17*Sqrt[5])/12,200]]

Formula

Digits of (45+17*sqrt(5))/12.

A179592 Decimal expansion of the circumradius of pentagonal cupola with edge length 1.

Original entry on oeis.org

2, 2, 3, 2, 9, 5, 0, 5, 0, 9, 4, 1, 5, 6, 9, 0, 0, 4, 9, 5, 0, 0, 4, 1, 5, 3, 8, 3, 2, 4, 9, 6, 8, 2, 7, 7, 2, 9, 3, 4, 0, 8, 0, 7, 3, 0, 5, 7, 9, 1, 8, 1, 6, 4, 7, 4, 5, 7, 4, 4, 1, 2, 6, 0, 8, 2, 5, 5, 6, 5, 8, 9, 4, 9, 0, 1, 6, 4, 3, 8, 2, 8, 9, 6, 2, 4, 5, 1, 9, 5, 0, 6, 0, 9, 2, 7, 3, 7, 3, 8, 5, 6, 4, 7, 4
Offset: 1

Views

Author

Keywords

Comments

Pentagonal cupola: 15 vertices, 25 edges, and 12 faces.

Examples

			2.232950509415690049500415383249682772934080730579181647457441260...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[Sqrt[11+4*Sqrt[5]]/2,200]]

Formula

Digits of sqrt(11+4*sqrt(5))/2.

A179639 Decimal expansion of the volume of gyroelongated pentagonal pyramid with edge length 1.

Original entry on oeis.org

1, 8, 8, 0, 1, 9, 2, 1, 5, 8, 2, 2, 9, 0, 8, 7, 8, 0, 2, 8, 2, 0, 1, 0, 6, 7, 9, 2, 4, 4, 0, 8, 9, 5, 2, 5, 4, 9, 5, 6, 8, 9, 8, 5, 5, 1, 5, 2, 0, 9, 8, 8, 8, 1, 3, 2, 6, 8, 2, 5, 3, 1, 3, 3, 6, 9, 5, 6, 1, 2, 0, 1, 3, 7, 8, 0, 8, 4, 3, 5, 0, 3, 9, 4, 7, 0, 7, 2, 0, 6, 9, 8, 0, 8, 7, 1, 0, 0, 1, 9, 7, 8, 0, 2, 3
Offset: 1

Views

Author

Keywords

Comments

Gyroelongated pentagonal pyramid: 11 vertices,25 edges,and 16 faces.

Examples

			1.88019215822908780282010679244089525495689855152098881326825313369561...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[(25+9*Sqrt[5])/24,200]]

Formula

Digits of (25+9*sqrt(5))/24.
Previous Showing 11-20 of 23 results. Next