cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A010527 Decimal expansion of sqrt(3)/2.

Original entry on oeis.org

8, 6, 6, 0, 2, 5, 4, 0, 3, 7, 8, 4, 4, 3, 8, 6, 4, 6, 7, 6, 3, 7, 2, 3, 1, 7, 0, 7, 5, 2, 9, 3, 6, 1, 8, 3, 4, 7, 1, 4, 0, 2, 6, 2, 6, 9, 0, 5, 1, 9, 0, 3, 1, 4, 0, 2, 7, 9, 0, 3, 4, 8, 9, 7, 2, 5, 9, 6, 6, 5, 0, 8, 4, 5, 4, 4, 0, 0, 0, 1, 8, 5, 4, 0, 5, 7, 3, 0, 9, 3, 3, 7, 8, 6, 2, 4, 2, 8, 7, 8, 3, 7, 8, 1, 3
Offset: 0

Views

Author

Keywords

Comments

This is the ratio of the height of an equilateral triangle to its base.
Essentially the same sequence arises from decimal expansion of square root of 75, which is 8.6602540378443864676372317...
Also the real part of i^(1/3), the cubic root of i. - Stanislav Sykora, Apr 25 2012
Gilbert & Pollak conjectured that this is the Steiner ratio rho_2, the least upper bound of the ratio of the length of the Steiner minimal tree to the length of the minimal tree in dimension 2. (See Ivanov & Tuzhilin for the status of this conjecture as of 2012.) - Charles R Greathouse IV, Dec 11 2012
Surface area of a regular icosahedron with unit edge is 5*sqrt(3), i.e., 10 times this constant. - Stanislav Sykora, Nov 29 2013
Circumscribed sphere radius for a cube with unit edges. - Stanislav Sykora, Feb 10 2014
Also the ratio between the height and the pitch, used in the Unified Thread Standard (UTS). - Enrique Pérez Herrero, Nov 13 2014
Area of a 30-60-90 triangle with shortest side equal to 1. - Wesley Ivan Hurt, Apr 09 2016
If a, b, c are the sides of a triangle ABC and h_a, h_b, h_c the corresponding altitudes, then (h_a+h_b+h_c) / (a+b+c) <= sqrt(3)/2; equality is obtained only when the triangle is equilateral (see Mitrinovic reference). - Bernard Schott, Sep 26 2022

Examples

			0.86602540378443864676372317...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Sections 8.2, 8.3 and 8.6, pp. 484, 489, and 504.
  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §12.4 Theorems and Formulas (Solid Geometry), pp. 450-451.
  • D. S. Mitrinovic, E. S. Barnes, D. C. B. Marsh, and J. R. M. Radok, Elementary Inequalities, Tutorial Text 1 (1964), P. Noordhoff LTD, Groningen, problem 6.8, page 114.

Crossrefs

Cf. A010153.
Cf. Platonic solids surfaces: A002194 (tetrahedron), A010469 (octahedron), A131595 (dodecahedron).
Cf. Platonic solids circumradii: A010503 (octahedron), A019881 (icosahedron), A179296 (dodecahedron), A187110 (tetrahedron).
Cf. A126664 (continued fraction), A144535/A144536 (convergents).
Cf. A002194, A010502, A020821, A104956, A152623 (other geometric inequalities).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); Sqrt(3)/2; // G. C. Greubel, Nov 02 2018
  • Maple
    Digits:=100: evalf(sqrt(3)/2); # Wesley Ivan Hurt, Apr 09 2016
  • Mathematica
    RealDigits[Sqrt[3]/2, 10, 200][[1]] (* Vladimir Joseph Stephan Orlovsky, Feb 21 2011 *)
  • PARI
    default(realprecision, 20080); x=10*(sqrt(3)/2); for (n=0, 20000, d=floor(x); x=(x-d)*10; write("b010527.txt", n, " ", d));  \\ Harry J. Smith, Jun 02 2009
    
  • PARI
    sqrt(3)/2 \\ Michel Marcus, Apr 10 2016
    

Formula

Equals cos(30 degrees). - Kausthub Gudipati, Aug 15 2011
Equals A002194/2. - Stanislav Sykora, Nov 30 2013
From Amiram Eldar, Jun 29 2020: (Start)
Equals sin(Pi/3) = cos(Pi/6).
Equals Integral_{x=0..Pi/3} cos(x) dx. (End)
Equals 1/(10*A020832). - Bernard Schott, Sep 29 2022
Equals x^(x^(x^...)) where x = (3/4)^(1/sqrt(3)) (infinite power tower). - Michal Paulovic, Jun 25 2023
Equals 2F1(-1/4,1/4 ; 1/2 ; 3/4) . - R. J. Mathar, Aug 31 2025

Extensions

Last term corrected and more terms added by Harry J. Smith, Jun 02 2009

A010503 Decimal expansion of 1/sqrt(2).

Original entry on oeis.org

7, 0, 7, 1, 0, 6, 7, 8, 1, 1, 8, 6, 5, 4, 7, 5, 2, 4, 4, 0, 0, 8, 4, 4, 3, 6, 2, 1, 0, 4, 8, 4, 9, 0, 3, 9, 2, 8, 4, 8, 3, 5, 9, 3, 7, 6, 8, 8, 4, 7, 4, 0, 3, 6, 5, 8, 8, 3, 3, 9, 8, 6, 8, 9, 9, 5, 3, 6, 6, 2, 3, 9, 2, 3, 1, 0, 5, 3, 5, 1, 9, 4, 2, 5, 1, 9, 3, 7, 6, 7, 1, 6, 3, 8, 2, 0, 7, 8, 6, 3, 6, 7, 5, 0, 6
Offset: 0

Views

Author

Keywords

Comments

The decimal expansion of sqrt(50) = 5*sqrt(2) = 7.0710678118654752440... gives essentially the same sequence.
Also real and imaginary part of the square root of the imaginary unit. - Alonso del Arte, Jan 07 2011
1/sqrt(2) = (1/2)^(1/2) = (1/4)^(1/4) (see the comments in A072364).
If a triangle has sides whose lengths form a harmonic progression in the ratio 1 : 1/(1 + d) : 1/(1 + 2d) then the triangle inequality condition requires that d be in the range -1 + 1/sqrt(2) < d < 1/sqrt(2). - Frank M Jackson, Oct 11 2011
Let s_2(n) be the sum of the base-2 digits of n and epsilon(n) = (-1)^s_2(n), the Thue-Morse sequence A010060, then Product_{n >= 0} ((2*n + 1)/(2*n + 2))^epsilon(n) = 1/sqrt(2). - Jonathan Vos Post, Jun 03 2012
The square root of 1/2 and thus it follows from the Pythagorean theorem that it is the sine of 45 degrees (and the cosine of 45 degrees). - Alonso del Arte, Sep 24 2012
Circumscribed sphere radius for a regular octahedron with unit edges. In electrical engineering, ratio of effective amplitude to peak amplitude of an alternating current/voltage. - Stanislav Sykora, Feb 10 2014
Radius of midsphere (tangent to edges) in a cube with unit edges. - Stanislav Sykora, Mar 27 2014
Positive zero of the Hermite polynomial of degree 2. - A.H.M. Smeets, Jun 02 2025

Examples

			0.7071067811865475...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, Sections 1.1, 7.5.2, and 8.2, pp. 1-3, 468, 484, 487.
  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §12.4 Theorems and Formulas (Solid Geometry), p. 450.

Crossrefs

Cf. A073084 (infinite tetration limit).
Platonic solids circumradii: A010527 (cube), A019881 (icosahedron), A179296 (dodecahedron), A187110 (tetrahedron).
Platonic solids midradii: A020765 (tetrahedron), A020761 (octahedron), A019863 (icosahedron), A239798 (dodecahedron).

Programs

  • Magma
    1/Sqrt(2); // Vincenzo Librandi, Feb 21 2016
  • Maple
    Digits:=100; evalf(1/sqrt(2)); Wesley Ivan Hurt, Mar 27 2014
  • Mathematica
    N[ 1/Sqrt[2], 200]
    RealDigits[1/Sqrt[2],10,120][[1]] (* Harvey P. Dale, Mar 25 2019 *)
  • PARI
    default(realprecision, 20080); x=10*(1/sqrt(2)); for (n=0, 20000, d=floor(x); x=(x-d)*10; write("b010503.txt", n, " ", d)); \\ Harry J. Smith, Jun 02 2009
    

Formula

1/sqrt(2) = cos(Pi/4) = sqrt(2)/2. - Eric Desbiaux, Nov 05 2008
a(n) = 9 - A268682(n). As constants, this sequence is 1 - A268682. - Philippe Deléham, Feb 21 2016
From Amiram Eldar, Jun 29 2020: (Start)
Equals sin(Pi/4) = cos(Pi/4).
Equals Integral_{x=0..Pi/4} cos(x) dx. (End)
Equals (1/2)*A019884 + A019824 * A010527 = A019851 * A019896 + A019812 * A019857. - R. J. Mathar, Jan 27 2021
Equals hypergeom([-1/2, -3/4], [5/4], -1). - Peter Bala, Mar 02 2022
Limit_{n->oo} (sqrt(T(n+1)) - sqrt(T(n))) = 1/sqrt(2), where T(n) = n(n+1)/2 = A000217(n) is the triangular numbers. - Jules Beauchamp, Sep 18 2022
Equals Product_{k>=0} ((2*k+1)/(2*k+2))^((-1)^A000120(k)) (Woods, 1978). - Amiram Eldar, Feb 04 2024
From Stefano Spezia, Oct 15 2024: (Start)
Equals 1 + Sum_{k>=1} (-1)^k*binomial(2*k,k)/2^(2*k) [Newton].
Equal Product_{k>=1} 1 - 1/(4*(2*k - 1)^2). (End)
Equals Product_{k>=0} (1 - (-1)^k/(6*k+3)). - Amiram Eldar, Nov 22 2024

Extensions

More terms from Harry J. Smith, Jun 02 2009

A019881 Decimal expansion of sin(2*Pi/5) (sine of 72 degrees).

Original entry on oeis.org

9, 5, 1, 0, 5, 6, 5, 1, 6, 2, 9, 5, 1, 5, 3, 5, 7, 2, 1, 1, 6, 4, 3, 9, 3, 3, 3, 3, 7, 9, 3, 8, 2, 1, 4, 3, 4, 0, 5, 6, 9, 8, 6, 3, 4, 1, 2, 5, 7, 5, 0, 2, 2, 2, 4, 4, 7, 3, 0, 5, 6, 4, 4, 4, 3, 0, 1, 5, 3, 1, 7, 0, 0, 8, 5, 1, 9, 3, 5, 0, 1, 7, 1, 8, 7, 9, 2, 8, 1, 0, 9, 7, 0, 8, 1, 1, 3, 8, 1
Offset: 0

Views

Author

Keywords

Comments

Circumradius of pentagonal pyramid (Johnson solid 2) with edge 1. - Vladimir Joseph Stephan Orlovsky, Jul 19 2010
Circumscribed sphere radius for a regular icosahedron with unit edges. - Stanislav Sykora, Feb 10 2014
Side length of the particular golden rhombus with diagonals 1 and phi (A001622); area is phi/2 (A019863). Thus, also the ratio side/(shorter diagonal) for any golden rhombus. Interior angles of a golden rhombus are always A105199 and A137218. - Rick L. Shepherd, Apr 10 2017
An algebraic number of degree 4; minimal polynomial is 16x^4 - 20x^2 + 5, which has these smaller, other solutions (conjugates): -A019881 < -A019845 < A019845 (sine of 36 degrees). - Rick L. Shepherd, Apr 11 2017
This is length ratio of one half of any diagonal in the regular pentagon and the circumscribing radius. - Wolfdieter Lang, Jan 07 2018
Quartic number of denominator 2 and minimal polynomial 16x^4 - 20x^2 + 5. - Charles R Greathouse IV, May 13 2019
This gives the imaginary part of one of the members of a conjugate pair of roots of x^5 - 1, with real part (-1 + phi)/2 = A019827, where phi = A001622. A member of the other conjugte pair of roots is (-phi + sqrt(3 - phi)*i)/2 = (-A001622 + A182007*i)/2 = -A001622/2 + A019845*i. - Wolfdieter Lang, Aug 30 2022

Examples

			0.95105651629515357211643933337938214340569863412575022244730564443015317008...
		

References

  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §12.4 Theorems and Formulas (Solid Geometry), p. 451.

Crossrefs

Cf. Platonic solids circumradii: A010503 (octahedron), A010527 (cube), A179296 (dodecahedron), A187110 (tetrahedron). - Stanislav Sykora, Feb 10 2014

Programs

  • Magma
    SetDefaultRealField(RealField(100)); Sqrt((5 + Sqrt(5))/8); // G. C. Greubel, Nov 02 2018
  • Maple
    Digits:=100: evalf(sin(2*Pi/5)); # Wesley Ivan Hurt, Sep 01 2014
  • Mathematica
    RealDigits[Sqrt[(5 + Sqrt[5])/8], 10, 111]  (* Robert G. Wilson v *)
    RealDigits[Sin[2 Pi/5], 10, 111][[1]] (* Robert G. Wilson v, Jan 07 2018 *)
  • PARI
    default(realprecision, 120);
    real(I^(1/5)) \\ Rick L. Shepherd, Apr 10 2017
    

Formula

Equals sqrt((5+sqrt(5))/8) = cos(Pi/10). - Zak Seidov, Nov 18 2006
Equals 2F1(13/20,7/20;1/2;3/4) / 2. - R. J. Mathar, Oct 27 2008
Equals the real part of i^(1/5). - Stanislav Sykora, Apr 25 2012
Equals A001622*A182007/2. - Stanislav Sykora, Feb 10 2014
Equals sin(2*Pi/5) = sqrt(2 + phi)/2 = -sin(3*Pi/5), with phi = A001622 - Wolfdieter Lang, Jan 07 2018
Equals 2*A019845*A019863. - R. J. Mathar, Jan 17 2021

A187110 Decimal expansion of sqrt(3/8).

Original entry on oeis.org

6, 1, 2, 3, 7, 2, 4, 3, 5, 6, 9, 5, 7, 9, 4, 5, 2, 4, 5, 4, 9, 3, 2, 1, 0, 1, 8, 6, 7, 6, 4, 7, 2, 8, 4, 7, 9, 9, 1, 4, 8, 6, 8, 7, 0, 1, 6, 4, 1, 6, 7, 5, 3, 2, 1, 0, 8, 1, 7, 3, 1, 4, 1, 8, 1, 2, 7, 4, 0, 0, 9, 4, 3, 6, 4, 3, 2, 8, 7, 5, 6, 6, 3, 4, 9, 6, 4, 8, 5, 8
Offset: 0

Views

Author

Keywords

Comments

Apart from leading digits, the same as A174925.
Radius of the circumscribed sphere (congruent with vertices) for a regular tetrahedron with unit edges. - Stanislav Sykora, Nov 20 2013

Examples

			sqrt(3/8)=0.61237243569579452454932101867647284799148687016417..
		

References

  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §12.4 Theorems and Formulas (Solid Geometry), p. 450.

Crossrefs

Cf. Platonic solids circumradii: A010503 (octahedron), A010527 (cube), A019881 (icosahedron), A179296 (dodecahedron). - Stanislav Sykora, Feb 10 2014

Programs

Formula

Equals A010464/4. - Stefano Spezia, Jan 26 2025
Equals 3*A020781 = A115754/2 = sqrt(A301755). - Hugo Pfoertner, Jan 26 2025

A377806 Decimal expansion of the circumradius of a snub dodecahedron with unit edge length.

Original entry on oeis.org

2, 1, 5, 5, 8, 3, 7, 3, 7, 5, 1, 1, 5, 6, 3, 9, 7, 0, 1, 8, 3, 6, 6, 2, 9, 0, 7, 6, 6, 9, 3, 0, 5, 8, 2, 7, 7, 0, 1, 6, 8, 5, 1, 2, 1, 8, 7, 7, 4, 8, 1, 1, 8, 2, 2, 4, 1, 2, 2, 1, 5, 4, 3, 0, 1, 2, 0, 0, 6, 7, 0, 8, 0, 9, 4, 9, 4, 8, 4, 0, 0, 0, 5, 3, 4, 2, 9, 9, 2, 6
Offset: 1

Views

Author

Paolo Xausa, Nov 10 2024

Keywords

Examples

			2.1558373751156397018366290766930582770168512187748...
		

Crossrefs

Cf. A377804 (surface area), A377805 (volume), A377807 (midradius).
Cf. A179296 (analogous for a regular dodecahedron).
Cf. A377849.

Programs

  • Mathematica
    First[RealDigits[Sqrt[1 + 1/(1 - Root[#^3 + 2*#^2 - GoldenRatio^2 &, 1])]/2, 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["SnubDodecahedron", "Circumradius"], 10, 100]]

Formula

Equals sqrt(1 + 1/(1 - A377849))/2.
Equals the real root closest to 2 of 4096*x^12 - 27648*x^10 + 47104*x^8 - 35776*x^6 + 13872*x^4 -2696*x^2 + 209.

A363438 Decimal expansion of the volume of the regular dodecahedron inscribed in the unit-radius sphere.

Original entry on oeis.org

2, 7, 8, 5, 1, 6, 3, 8, 6, 3, 1, 2, 2, 6, 2, 2, 9, 6, 7, 2, 9, 2, 5, 5, 4, 9, 1, 2, 7, 3, 5, 9, 4, 6, 9, 8, 7, 8, 9, 9, 3, 2, 1, 7, 7, 2, 0, 7, 6, 3, 3, 1, 9, 9, 2, 6, 3, 7, 0, 2, 4, 1, 4, 7, 4, 1, 6, 2, 5, 5, 1, 5, 0, 3, 2, 9, 1, 0, 6, 4, 9, 3, 0, 9, 4, 4, 4, 8, 5, 1, 3, 4, 7, 6, 6, 4, 8, 0, 8, 8, 0, 6, 5, 4, 2
Offset: 1

Views

Author

Amiram Eldar, Jun 02 2023

Keywords

Examples

			2.78516386312262296729255491273594698789932177207633...
		

Crossrefs

Cf. A118273 (cube), A122553 (regular octahedron), A339259 (regular icosahedron), A363437 (regular tetrahedron).
Cf. A001622.
Other constants related to the regular dodecahedron: A102769, A131595, A179296, A232810, A237603, A239798, A341906.

Programs

  • Mathematica
    RealDigits[(2*(5 + Sqrt[5]))/(3*Sqrt[3]), 10, 120][[1]]
  • PARI
    2*sqrt(5+sqrt(5))/sqrt(27) \\ Charles R Greathouse IV, Feb 07 2025

Formula

Equals 2*sqrt(5+sqrt(5))/(3*sqrt(3)).
Equals 4*(phi+2)/(3*sqrt(3)), where phi is the golden ratio (A001622).
Equals A102769 / A179296 ^ 3.

A377696 Decimal expansion of the circumradius of a truncated dodecahedron with unit edge length.

Original entry on oeis.org

2, 9, 6, 9, 4, 4, 9, 0, 1, 5, 8, 6, 3, 3, 9, 8, 4, 6, 7, 0, 4, 2, 1, 6, 6, 6, 9, 5, 6, 9, 2, 5, 9, 7, 9, 6, 3, 6, 0, 0, 7, 4, 7, 7, 0, 0, 3, 2, 8, 0, 9, 6, 6, 9, 9, 8, 3, 7, 8, 6, 2, 7, 7, 6, 1, 2, 2, 1, 0, 6, 9, 2, 4, 4, 8, 8, 8, 3, 7, 5, 2, 0, 9, 0, 7, 9, 6, 4, 7, 1
Offset: 1

Views

Author

Paolo Xausa, Nov 04 2024

Keywords

Examples

			2.9694490158633984670421666956925979636007477003...
		

Crossrefs

Cf. A377694 (surface area), A377695 (volume), A377697 (midradius), A377698 (Dehn invariant, negated).
Cf. A179296 (analogous for a regular dodecahedron).
Cf. A002163.

Programs

  • Mathematica
    First[RealDigits[Sqrt[74 + 30*Sqrt[5]]/4, 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["TruncatedDodecahedron", "Circumradius"], 10, 100]]

Formula

Equals sqrt(74 + 30*sqrt(5))/4 = sqrt(74 + 30*A002163)/4.

A341906 Decimal expansion of the moment of inertia of a solid regular dodecahedron with a unit mass and a unit edge length.

Original entry on oeis.org

6, 0, 7, 3, 5, 5, 5, 0, 3, 7, 4, 1, 6, 3, 9, 3, 2, 7, 1, 9, 9, 8, 5, 9, 2, 4, 3, 6, 0, 1, 7, 3, 2, 5, 7, 7, 2, 7, 3, 9, 4, 7, 0, 5, 3, 4, 1, 6, 1, 6, 5, 0, 1, 0, 8, 2, 1, 8, 8, 3, 3, 0, 8, 5, 7, 0, 0, 3, 4, 3, 8, 6, 9, 9, 9, 5, 8, 1, 3, 0, 3, 5, 9, 0, 5, 4, 0
Offset: 0

Views

Author

Amiram Eldar, Jun 04 2021

Keywords

Comments

The moments of inertia of the five Platonic solids were apparently first calculated by the Canadian physicist John Satterly (1879-1963) in 1957.
The moment of inertia of a solid regular dodecahedron with a uniform mass density distribution, mass M, and edge length L is I = c*M*L^2, where c is this constant.
The corresponding values of c for the other Platonic solids are:
Tetrahedron: 1/20 (= A020761/10).
Octahedron: 1/10 (= A000007).
Cube: 1/6 (= A020793).
Icosahedron: (3 + sqrt(5))/20 (= A104457/10).

Examples

			0.60735550374163932719985924360173257727394705341616...
		

Crossrefs

Other constants related to the regular dodecahedron: A102769, A131595, A179296, A232810, A237603, A239798.

Programs

  • Mathematica
    RealDigits[(95 + 39*Sqrt[5])/300, 10, 100][[1]]

Formula

Equals (95 + 39*sqrt(5))/300.
Equals (28 + 39*phi)/150, where phi is the golden ratio (A001622).

A370944 Decimal expansion of ((1+sqrt(5))/2)*sqrt(3) = A001622*A002194.

Original entry on oeis.org

2, 8, 0, 2, 5, 1, 7, 0, 7, 6, 8, 8, 8, 1, 4, 7, 0, 8, 9, 3, 5, 3, 3, 5, 5, 8, 7, 0, 6, 4, 4, 1, 3, 5, 9, 8, 8, 8, 8, 7, 8, 6, 3, 4, 7, 9, 5, 5, 0, 9, 8, 5, 7, 2, 7, 3, 2, 1, 6, 9, 0, 3, 7, 2, 7, 8, 2, 7, 0, 8, 0, 5, 4, 4, 2, 2, 8, 8, 9, 5, 3, 5, 3, 0, 0, 2
Offset: 1

Views

Author

Paolo Xausa, Mar 07 2024

Keywords

Comments

Long space diagonal of a regular dodecahedron with unit edges.

Examples

			2.80251707688814708935335587064413598888786347955...
		

Crossrefs

Cf. A094887 (short diagonal), A104457 (medium diagonal).

Programs

  • Maple
    (sqrt(3) + sqrt(15))/2: evalf(%, 86);  # Peter Luschny, Mar 07 2024
  • Mathematica
    First[RealDigits[GoldenRatio*Sqrt[3], 10, 100]]

Formula

Equals 2*A179296. - Hugo Pfoertner, Mar 07 2024

A381264 Decimal expansion of the edge length of the dodecahedron inside a circumscribed unit sphere.

Original entry on oeis.org

7, 1, 3, 6, 4, 4, 1, 7, 9, 5, 4, 6, 1, 7, 9, 8, 6, 3, 8, 8, 3, 9, 3, 9, 6, 8, 6, 0, 9, 2, 1, 7, 5, 7, 4, 7, 9, 6, 3, 3, 7, 2, 1, 5, 0, 4, 9, 3, 7, 3, 6, 7, 3, 2, 8, 4, 3, 9, 2, 2, 2, 6, 2, 2, 2, 0, 5, 1, 6, 6, 9, 1, 6, 7, 6, 0, 5, 9, 6, 6, 5, 4, 7, 9, 3, 8, 0, 3, 9, 6, 7, 0
Offset: 0

Views

Author

R. J. Mathar, Feb 18 2025

Keywords

Examples

			0.7136441795461798638839396860921757479633721504937...
		

Crossrefs

Programs

  • Maple
    g := (1+sqrt(5))/2 ; Digits := 100 ; evalf(2/sqrt(3)/g) ;
  • Mathematica
    First[RealDigits[2/(Sqrt[3]*GoldenRatio), 10, 100]] (* Paolo Xausa, Feb 19 2025 *)

Formula

Equals 2/(sqrt(3)*A001622) = 1/A179296.
Equals 2*sin(A156547/2).
Minimal polynomial: 9*x^4 - 36*x^2 + 16. - Amiram Eldar, Feb 26 2025
Showing 1-10 of 10 results.