cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 23 results. Next

A179406 Record minima of the positive distance d between the fifth power of a positive integer x and the square of an integer y such that d = x^5 - y^2 (x != k^2 and y != k^5).

Original entry on oeis.org

7, 19, 60, 341, 47776, 70378, 78846, 115775, 220898, 780231, 2242100, 11889984, 26914479, 50406928, 77146256, 80117392, 284679759, 595974650, 2071791247, 7825152599, 67944824923, 742629277177, 1709838230002, 2676465117663
Offset: 1

Views

Author

Artur Jasinski, Jul 13 2010

Keywords

Comments

Distance d is equal to 0 when x = k^2 and y = k^5.
For x values see A179407.
For y values see A179408.
Conjecture (from Artur Jasinski): For any positive number x >= A179407(n), the distance d between the fifth power of x and the square of any y (such that x != k^2 and y != k^5) can't be less than A179406(n).

Crossrefs

Programs

  • Mathematica
    max = 1000; vecd = Table[10^100, {n, 1, max}]; vecx = Table[10^100, {n, 1, max}]; vecy = Table[10^100, {n, 1, max}]; len = 1; Do[m = Floor[(n^5)^(1/2)]; k = n^5 - m^2; If[k != 0, ile = 0; Do[If[vecd[[z]] < k, ile = ile + 1], {z, 1, len}]; len = ile + 1; vecd[[len]] = k; vecx[[len]] = n; vecy[[len]] = m], {n, 1, 96001}]; dd = {}; xx = {}; yy = {}; Do[AppendTo[dd, vecd[[n]]]; AppendTo[xx, vecx[[n]]]; AppendTo[yy, vecy[[n]]], {n, 1, len}]; dd

A179798 Record minima of the positive distance d between the 11th power of a positive integer x and the square of an integer y such that d = x^13 - y^2 (x <> k^2 and y <> k^13).

Original entry on oeis.org

92, 1679, 39281, 89927, 296863, 1530322, 12056004, 55972895, 67903894, 102383343, 641211875, 5148097536, 13764973788, 19839459725, 87957606400, 113794567580, 126889914716, 146745583311, 880304597278, 1154049177924
Offset: 1

Views

Author

Artur Jasinski, Jul 27 2010

Keywords

Comments

Distance d is equal to 0 when x = k^2 and y = k^13.
For x values see A179799.
For x values see A179800.
Conjecture (Artur Jasinski):
For any positive number x >= A179799(n), the distance d between the eleventh power of x and the square of any y (such that x <> k^2 and y <> k^13) can't be less than A179798(n).

Crossrefs

Programs

  • Mathematica
    d = 13; max = 1000; vecd = Table[10^100, {n, 1, max}]; vecx = Table[10^100, {n, 1, max}]; vecy = Table[10^100, {n, 1, max}]; len = 1; Do[m = Floor[(n^d)^(1/2)]; k = n^d - m^2; If[k != 0, ile = 0; Do[If[vecd[[z]] < k, ile = ile + 1], {z, 1, len}]; len = ile + 1; vecd[[len]] = k; vecx[[len]] = n; vecy[[len]] = m], {n, 1, 10000000}]; dd = {}; xx = {}; yy = {}; Do[AppendTo[dd, vecd[[n]]]; AppendTo[xx, vecx[[n]]]; AppendTo[yy, vecy[[n]]], {n, 1, len}]; dd

A179799 Values x for records of minima of the positive distance d between an 11th power of a positive integer x and a square of an integer y such that d = x^13 - y^2 (x<>k^2 and y<>k^13).

Original entry on oeis.org

2, 3, 5, 6, 8, 11, 13, 14, 23, 24, 35, 40, 42, 45, 50, 54, 62, 70, 79, 85, 88, 89, 142, 152, 220, 345, 353, 364, 412, 416, 455, 627, 734, 743, 911, 921, 1068, 1095, 1294, 1894, 2398, 2719, 2887, 3015, 3623, 3814, 5837, 6226, 8603, 8669, 8971, 9987, 12683
Offset: 1

Views

Author

Artur Jasinski, Jul 27 2010

Keywords

Comments

Distance d = 0 when x = k^2 and y = k^13.
For d values see A179798.
For y values see A179800.
Conjecture: For any positive number x >= A179799(n) the distance d between the 11th power of x and the square of any y (such that x<>k^2 and y<>k^13) can't be less than A179798(n).

Crossrefs

Programs

  • Mathematica
    d = 13; max = 1000; vecd = Table[10^100, {n, 1, max}]; vecx = Table[10^100, {n, 1, max}]; vecy = Table[10^100, {n, 1, max}]; len = 1; Do[m = Floor[(n^d)^(1/2)]; k = n^d - m^2; If[k != 0, ile = 0; Do[If[vecd[[z]] < k, ile = ile + 1], {z, 1, len}]; len = ile + 1; vecd[[len]] = k; vecx[[len]] = n; vecy[[len]] = m], {n, 1, 10000000}]; dd = {}; xx = {}; yy = {}; Do[AppendTo[dd, vecd[[n]]]; AppendTo[xx, vecx[[n]]]; AppendTo[yy, vecy[[n]]], {n, 1, len}]; xx

A179800 Values y for record minima of the positive distance d between the thirteenth power of a positive integer x and the square of an integer y such that d = x^13 - y^2 (x <> k^2 and y <> k^13).

Original entry on oeis.org

90, 1262, 34938, 114283, 741455, 5875603, 17403307, 28172943, 709955183, 936209559, 10875326100, 25905378592, 35572991418, 55703353220, 110485434560, 182204642678, 447245502234, 984322154617, 2160608565081, 3477146726351
Offset: 1

Views

Author

Artur Jasinski, Jul 27 2010

Keywords

Comments

Distance d is equal to 0 when x = k^2 and y = k^13.
For d values see A179798.
For x values see A179799.
Conjecture: For any positive number x >= A179799(n), the distance d between the 13th power of x and the square of any y (such that x <> k^2 and y <> k^13) can't be less than A179798(n).

Crossrefs

Programs

  • Mathematica
    d = 13; max = 1000; vecd = Table[10^100, {n, 1, max}]; vecx = Table[10^100, {n, 1, max}]; vecy = Table[10^100, {n, 1, max}]; len = 1; Do[m = Floor[(n^d)^(1/2)]; k = n^d - m^2; If[k != 0, ile = 0; Do[If[vecd[[z]] < k, ile = ile + 1], {z, 1, len}]; len = ile + 1; vecd[[len]] = k; vecx[[len]] = n; vecy[[len]] = m], {n, 1, 10000000}]; dd = {}; xx = {}; yy = {}; Do[AppendTo[dd, vecd[[n]]]; AppendTo[xx, vecx[[n]]]; AppendTo[yy, vecy[[n]]], {n, 1, len}]; yy

A179812 Record minima of the positive distance d between the fifteenth power of a positive integer x and the square of an integer y such that d = x^15 - y^2 (x <> k^2 and y <> k^15).

Original entry on oeis.org

7, 7538, 283261, 494576, 4235622, 7135951, 38053824, 55905695, 185380312, 1208691743, 3263221507, 14034746735, 14732727599, 24211719874, 68491624661, 136264246246, 5337970328375, 6845918569200, 15505738619231, 30037885135088
Offset: 1

Views

Author

Artur Jasinski, Jul 28 2010

Keywords

Comments

Distance d is equal to 0 when x = k^2 and y = k^15.
For x values see A179813.
For y values see A179814.
Conjecture: For any positive number x >= A179813(n), the distance d between the fifteenth power of x and the square of any y (such that x <> k^2 and y <> k^15) can't be less than A179812(n).

Crossrefs

Programs

  • Mathematica
    d = 15; max = 1000; vecd = Table[10^100, {n, 1, max}]; vecx = Table[10^100, {n, 1, max}]; vecy = Table[10^100, {n, 1, max}]; len = 1; Do[m = Floor[(n^d)^(1/2)]; k = n^d - m^2; If[k != 0, ile = 0; Do[If[vecd[[z]] < k, ile = ile + 1], {z, 1, len}]; len = ile + 1; vecd[[len]] = k; vecx[[len]] = n; vecy[[len]] = m], {n, 1, 10000000}]; dd = {}; xx = {}; yy = {}; Do[AppendTo[dd, vecd[[n]]]; AppendTo[xx, vecx[[n]]]; AppendTo[yy, vecy[[n]]], {n, 1, len}]; dd

A179813 Values x for record minima of the positive distance d between the fifteenth power of a positive integer x and the square of an integer y such that d = x^15 - y^2 (x <> k^2 and y <> k^15).

Original entry on oeis.org

2, 3, 5, 6, 7, 8, 10, 11, 17, 18, 23, 24, 27, 35, 45, 55, 56, 76, 78, 84, 111, 114, 115, 117, 118, 139, 164, 172, 175, 176, 179, 183, 188, 190, 193, 305, 316, 377, 395, 461, 466, 483, 485, 654, 747, 868, 877, 931, 1045, 1434, 1822, 2199, 2645, 2754, 3171, 3961
Offset: 1

Views

Author

Artur Jasinski, Jul 28 2010

Keywords

Comments

Distance d is equal to 0 when x = k^2 and y = k^15.
For x values see A179813.
For y values see A179814.
Conjecture: For any positive number x >= A179813(n), the distance d between the fifteenth power of x and the square of any y (such that x <> k^2 and y <> k^15) can't be less than A179812(n).

Crossrefs

Programs

  • Mathematica
    d = 15; max = 1000; vecd = Table[10^100, {n, 1, max}]; vecx = Table[10^100, {n, 1, max}]; vecy = Table[10^100, {n, 1, max}]; len = 1; Do[m = Floor[(n^d)^(1/2)]; k = n^d - m^2; If[k != 0, ile = 0; Do[If[vecd[[z]] < k, ile = ile + 1], {z, 1, len}]; len = ile + 1; vecd[[len]] = k; vecx[[len]] = n; vecy[[len]] = m], {n, 1, 10000000}]; dd = {}; xx = {}; yy = {}; Do[AppendTo[dd, vecd[[n]]]; AppendTo[xx, vecx[[n]]]; AppendTo[yy, vecy[[n]]], {n, 1, len}]; xx

A179814 Values y for record minima of the positive distance d between the fifteenth power of a positive integer x and the square of an integer y such that d = x^15 - y^2 (x <> k^2 and y <> k^15).

Original entry on oeis.org

181, 3787, 174692, 685700, 2178889, 5931641, 31622776, 64631634, 1691869691, 2597429617, 16328969210, 22469029417, 54353589638, 380636413501, 2506650894908, 11290681881873, 12924394402851, 127673846293724
Offset: 1

Views

Author

Artur Jasinski, Jul 28 2010

Keywords

Comments

Distance d is equal to 0 when x = k^2 and y = k^15.
For d values see A179812.
For x values see A179813.
Conjecture: For any positive number x >= A179813(n), the distance d between the fifteenth power of x and the square of any y (such that x <> k^2 and y <> k^15) can't be less than A179812(n).

Crossrefs

Programs

  • Mathematica
    d = 15; max = 1000; vecd = Table[10^100, {n, 1, max}]; vecx = Table[10^100, {n, 1, max}]; vecy = Table[10^100, {n, 1, max}]; len = 1; Do[m = Floor[(n^d)^(1/2)]; k = n^d - m^2; If[k != 0, ile = 0; Do[If[vecd[[z]] < k, ile = ile + 1], {z, 1, len}]; len = ile + 1; vecd[[len]] = k; vecx[[len]] = n; vecy[[len]] = m], {n, 1, 10000000}]; dd = {}; xx = {}; yy = {}; Do[AppendTo[dd, vecd[[n]]]; AppendTo[xx, vecx[[n]]]; AppendTo[yy, vecy[[n]]], {n, 1, len}]; yy

A198443 Conjectured record minima of the positive distance d between the square of an integer y and the fifth power of a positive integer x such that d = y^2 - x^5 (x <> k^2 and y <> k^5).

Original entry on oeis.org

3, 4, 11, 26, 37, 368, 1828, 2180, 7825, 8177, 8217, 71393, 72481, 75154, 118409, 175485, 203697, 206370, 1049148, 1058224, 1843945, 1846618, 8186369, 8197633, 9600802, 96020524, 169503449, 294638801, 305158594, 305192969, 657099024
Offset: 1

Views

Author

Artur Jasinski, Oct 25 2011

Keywords

Comments

Distance d is equal to 0 when x = k^2 and y = k^5.
Only the values of x < 10^8 have been searched/
For x values see A198444.
For y values see A198445.
Conjecture: For any positive number x >= A198444(n), the distance d between the square of an integer y and the fifth power of a positive integer x (such that x <> k^2 and y <> k^5) can't be less than A198443(n).

Crossrefs

Programs

  • Mathematica
    max = 1000; vecd = Table[10^100, {n, 1, max}]; vecx = Table[10^100, {n, 1, max}]; vecy = Table[10^100, {n, 1, max}]; len = 1; Do[m = Floor[(n^5)^(1/2)] + 1; k = m^2 - n^5; If[k != 0, ile = 0; Do[If[vecd[[z]] < k, ile = ile + 1], {z, 1, len}]; len = ile + 1; vecd[[len]] = k; vecx[[len]] = n; vecy[[len]] = m], {n, 1, 100000000}]; dd = {}; xx = {}; yy = {}; Do[AppendTo[dd, vecd[[n]]];  AppendTo[xx, vecx[[n]]]; AppendTo[yy, vecy[[n]]], {n, 1, len}]; dd

Formula

a(n) = (A198445(n))^2 - (A198444(n))^5.

A198444 Values x for record minima of the positive distance d between the square of an integer y and the fifth power of a positive integer x such that d = y^2 - x^5 (x <> k^2 and y <> k^5).

Original entry on oeis.org

1, 2, 5, 23, 27, 73, 96, 104, 396, 404, 432, 686, 723, 735, 1130, 1159, 2019, 2031, 3861, 5310, 18219, 18231, 25592, 25608, 44367, 200141, 213842, 308228, 390615, 390635, 549976, 631544, 1579129, 1657086, 2941211, 2941239, 5523608
Offset: 1

Views

Author

Artur Jasinski, Oct 25 2011

Keywords

Comments

Distance d is equal to 0 when x = k^2 and y = k^5.
For d values see A198443.
For y values see A198445.
Conjecture: For any positive number x >= A198444(n), the distance d between the square of an integer y and the fifth power of x (such that x <> k^2 and y <> k^5) can't be less than A198443(n).

Crossrefs

Programs

  • Mathematica
    max = 1000; vecd = Table[10^100, {n, 1, max}]; vecx = Table[10^100, {n, 1, max}]; vecy = Table[10^100, {n, 1, max}]; len = 1; Do[m = Floor[(n^5)^(1/2)] + 1; k = m^2 - n^5; If[k != 0, ile = 0; Do[If[vecd[[z]] < k, ile = ile + 1], {z, 1, len}]; len = ile + 1; vecd[[len]] = k; vecx[[len]] = n; vecy[[len]] = m], {n, 1, 100000000}]; dd = {}; xx = {}; yy = {}; Do[AppendTo[dd, vecd[[n]]]; AppendTo[xx, vecx[[n]]]; AppendTo[yy, vecy[[n]]], {n, 1, len}]; vecx

A198445 Values y of record minima of the positive distance d between the square of an integer y and the fifth power of a positive integer x such that d = y^2 - x^5 (x <> k^2 and y <> k^5).

Original entry on oeis.org

2, 6, 56, 2537, 3788, 45531, 90298, 110302, 3120599, 3280601, 3878907, 12325663, 14055482, 14645977, 42923597, 45730778, 183164286, 185898039, 926295393, 2054642668, 44803437862, 44877249113, 104775699199, 104939539201, 414619915847, 17920089051165, 21146208937291, 52744869326263, 95361328242187, 9537353527343
Offset: 1

Views

Author

Artur Jasinski, Oct 25 2011

Keywords

Comments

Distance d is equal to 0 when x = k^2 and y = k^5.
For d values see A198443.
For x values see A198444.
Conjecture: For any positive number x >= A198444(n), the distance d between the square of an integer y and the fifth power of x (such that x <> k^2 and y <> k^5) can't be less than A198443(n).

Crossrefs

Programs

  • Mathematica
    max = 1000; vecd = Table[10^100, {n, 1, max}]; vecx = Table[10^100, {n, 1, max}]; vecy = Table[10^100, {n, 1, max}]; len = 1; Do[m = Floor[(n^5)^(1/2)] + 1; k = m^2 - n^5; If[k != 0, ile = 0; Do[If[vecd[[z]] < k, ile = ile + 1], {z, 1, len}]; len = ile + 1; vecd[[len]] = k; vecx[[len]] = n; vecy[[len]] = m], {n, 1, 100000000}]; dd = {}; xx = {}; yy = {}; Do[AppendTo[dd, vecd[[n]]]; AppendTo[xx, vecx[[n]]]; AppendTo[yy, vecy[[n]]], {n, 1, len}]; vecy
Previous Showing 11-20 of 23 results. Next