cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-19 of 19 results.

A344149 Decimal expansion of 30+5*sqrt(3)+3*sqrt(25+10*sqrt(5)).

Original entry on oeis.org

5, 9, 3, 0, 5, 9, 8, 2, 8, 4, 4, 9, 1, 1, 9, 8, 9, 5, 4, 0, 7, 4, 5, 3, 7, 5, 4, 3, 6, 1, 9, 2, 6, 7, 7, 0, 2, 7, 6, 0, 2, 5, 1, 6, 3, 0, 9, 1, 7, 4, 2, 8, 3, 0, 9, 0, 7, 6, 4, 1, 7, 1, 3, 8, 1, 5, 4, 6, 0, 9, 2, 9, 9, 1, 0, 5, 1, 5, 9, 4, 9, 6, 1, 3, 9, 5, 0, 2, 5, 8, 3, 0, 4, 3, 7, 2, 9, 5, 7, 6, 4
Offset: 2

Views

Author

Wesley Ivan Hurt, May 10 2021

Keywords

Comments

Decimal expansion of the surface area of a rhombicosidodecahedron with unit edge length.
Apart from the first digit the same as A179451. - R. J. Mathar, May 16 2021

Examples

			59.305982844911989540745375436192677...
		

Crossrefs

Cf. A185093 (rhombicosidodecahedron volume).

Programs

  • Magma
    SetDefaultRealField(RealField(200)); 30+5*Sqrt(3)+3*Sqrt(25+10*Sqrt(5));
  • Mathematica
    RealDigits[N[30 + 5*Sqrt[3] + 3*Sqrt[25 + 10*Sqrt[5]], 100]][[1]] (* Wesley Ivan Hurt, Nov 12 2022 *)

A179593 Decimal expansion of the volume of pentagonal rotunda with edge length 1.

Original entry on oeis.org

6, 9, 1, 7, 7, 6, 2, 9, 6, 8, 1, 2, 4, 7, 0, 2, 0, 6, 9, 9, 1, 2, 9, 9, 6, 0, 3, 0, 7, 0, 2, 6, 4, 1, 3, 3, 3, 5, 4, 0, 8, 7, 6, 0, 0, 9, 4, 4, 9, 6, 6, 1, 4, 4, 2, 7, 1, 7, 1, 0, 4, 4, 3, 0, 9, 9, 8, 2, 3, 7, 9, 7, 7, 9, 8, 6, 8, 9, 0, 2, 7, 4, 1, 7, 0, 4, 2, 0, 4, 1, 1, 8, 6, 9, 9, 4, 1, 5, 5, 6, 2, 0, 6, 8, 0
Offset: 1

Views

Author

Keywords

Comments

Pentagonal rotunda: 20 vertices, 35 edges, and 17 faces.

Examples

			6.91776296812470206991299603070264133354087600944966144271710443099823...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[(45+17*Sqrt[5])/12,200]]

Formula

Digits of (45+17*sqrt(5))/12.

A344075 Decimal expansion of arccos(-sqrt((5+2*sqrt(5))/15)).

Original entry on oeis.org

2, 4, 8, 9, 2, 3, 4, 5, 1, 3, 8, 0, 5, 4, 2, 5, 0, 5, 2, 4, 6, 7, 2, 5, 2, 7, 5, 1, 6, 3, 5, 6, 8, 0, 3, 0, 9, 8, 3, 1, 8, 6, 1, 4, 7, 9, 4, 1, 2, 1, 2, 6, 0, 7, 9, 1, 8, 0, 2, 1, 6, 6, 4, 5, 6, 0, 1, 6, 7, 2, 8, 2, 2, 4, 6, 5, 1, 6, 9, 4, 6, 5, 7, 1, 8, 4, 6, 7, 6, 8, 0, 9
Offset: 1

Views

Author

Wesley Ivan Hurt, May 08 2021

Keywords

Comments

Decimal expansion of the dihedral angle (radians) of an icosidodecahedron. Equals approximately 142.62 degrees.

Examples

			2.489234513805425052467...
		

Crossrefs

Cf. A179450 (icosidodecahedron volume), A179451 (icosidodecahedron surface area).

Programs

  • Mathematica
    RealDigits[ArcCos[-Sqrt[(5 + 2 Sqrt[5])/15]], 10, 200][[1]]
  • PARI
    acos(-sqrt((5+2*sqrt(5))/15)) \\ Michel Marcus, May 09 2021

A179592 Decimal expansion of the circumradius of pentagonal cupola with edge length 1.

Original entry on oeis.org

2, 2, 3, 2, 9, 5, 0, 5, 0, 9, 4, 1, 5, 6, 9, 0, 0, 4, 9, 5, 0, 0, 4, 1, 5, 3, 8, 3, 2, 4, 9, 6, 8, 2, 7, 7, 2, 9, 3, 4, 0, 8, 0, 7, 3, 0, 5, 7, 9, 1, 8, 1, 6, 4, 7, 4, 5, 7, 4, 4, 1, 2, 6, 0, 8, 2, 5, 5, 6, 5, 8, 9, 4, 9, 0, 1, 6, 4, 3, 8, 2, 8, 9, 6, 2, 4, 5, 1, 9, 5, 0, 6, 0, 9, 2, 7, 3, 7, 3, 8, 5, 6, 4, 7, 4
Offset: 1

Views

Author

Keywords

Comments

Pentagonal cupola: 15 vertices, 25 edges, and 12 faces.

Examples

			2.232950509415690049500415383249682772934080730579181647457441260...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[Sqrt[11+4*Sqrt[5]]/2,200]]

Formula

Digits of sqrt(11+4*sqrt(5))/2.

A179639 Decimal expansion of the volume of gyroelongated pentagonal pyramid with edge length 1.

Original entry on oeis.org

1, 8, 8, 0, 1, 9, 2, 1, 5, 8, 2, 2, 9, 0, 8, 7, 8, 0, 2, 8, 2, 0, 1, 0, 6, 7, 9, 2, 4, 4, 0, 8, 9, 5, 2, 5, 4, 9, 5, 6, 8, 9, 8, 5, 5, 1, 5, 2, 0, 9, 8, 8, 8, 1, 3, 2, 6, 8, 2, 5, 3, 1, 3, 3, 6, 9, 5, 6, 1, 2, 0, 1, 3, 7, 8, 0, 8, 4, 3, 5, 0, 3, 9, 4, 7, 0, 7, 2, 0, 6, 9, 8, 0, 8, 7, 1, 0, 0, 1, 9, 7, 8, 0, 2, 3
Offset: 1

Views

Author

Keywords

Comments

Gyroelongated pentagonal pyramid: 11 vertices,25 edges,and 16 faces.

Examples

			1.88019215822908780282010679244089525495689855152098881326825313369561...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[(25+9*Sqrt[5])/24,200]]

Formula

Digits of (25+9*sqrt(5))/24.

A179640 Decimal expansion of the surface area of gyroelongated pentagonal pyramid with edge length 1.

Original entry on oeis.org

8, 2, 1, 5, 6, 6, 7, 9, 2, 8, 9, 7, 2, 2, 5, 6, 7, 7, 3, 4, 8, 6, 9, 3, 5, 7, 5, 8, 0, 3, 5, 6, 3, 0, 9, 7, 5, 4, 4, 2, 8, 9, 3, 8, 7, 1, 7, 9, 9, 1, 2, 5, 6, 8, 4, 4, 1, 6, 3, 7, 0, 8, 7, 9, 9, 6, 8, 6, 1, 7, 8, 0, 5, 6, 1, 6, 9, 6, 6, 3, 7, 0, 3, 8, 6, 7, 3, 9, 4, 4, 1, 7, 2, 7, 2, 6, 9, 8, 9, 9, 2, 7, 7, 4, 7
Offset: 1

Views

Author

Keywords

Comments

Gyroelongated pentagonal pyramid: 11 vertices, 25 edges, and 16 faces.

Examples

			8.21566792897225677348693575803563097544289387179912568441637087996861...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[Sqrt[5/2*(70+Sqrt[5]+3*Sqrt[75+30*Sqrt[5]])]/2,200]]

Formula

Digits of sqrt(5/2*(70+sqrt(5)+3*sqrt(75+30*sqrt(5))))/2.

A381691 Decimal expansion of the isoperimetric quotient of an icosidodecahedron.

Original entry on oeis.org

8, 6, 0, 1, 5, 1, 2, 9, 1, 9, 2, 9, 0, 0, 5, 7, 3, 6, 9, 3, 4, 9, 8, 8, 7, 1, 7, 5, 5, 1, 1, 0, 4, 8, 0, 7, 6, 6, 8, 1, 6, 4, 2, 5, 3, 4, 6, 3, 9, 7, 9, 6, 5, 5, 6, 9, 0, 2, 5, 9, 7, 6, 2, 8, 7, 5, 7, 5, 0, 9, 1, 7, 9, 5, 8, 3, 2, 0, 3, 3, 6, 1, 1, 4, 0, 3, 1, 3, 6, 0
Offset: 0

Views

Author

Paolo Xausa, Mar 07 2025

Keywords

Comments

For the definition of isoperimetric quotient of a solid, references and links, see A381684.

Examples

			0.86015129192900573693498871755110480766816425346...
		

Crossrefs

Cf. A179451 (surface area), A179450 (volume).

Programs

  • Mathematica
    First[RealDigits[Pi*(765 + 347*#)/(15*Sqrt[6]*(10 + 3*# + Sqrt[75 + 30*#])^(3/2)) & [Sqrt[5]], 10, 100]]

Formula

Equals 36*Pi*A179450^2/(A179451^3).
Equals Pi*(765 + 347*sqrt(5))/(15*sqrt(6)*(10 + 3*sqrt(5) + sqrt(75 + 30*sqrt(5)))^(3/2)) = A000796*(765 + 347*A002163)/(15*A010464*(10 + 3*A002163 + sqrt(75 + 30*A002163))^(3/2)).

A384952 Decimal expansion of the volume of an elongated pentagonal orthobirotunda with unit edge.

Original entry on oeis.org

2, 1, 5, 2, 9, 7, 3, 4, 7, 7, 9, 1, 8, 7, 5, 3, 7, 6, 4, 6, 2, 5, 1, 7, 1, 8, 5, 0, 1, 4, 9, 7, 5, 5, 7, 2, 2, 7, 0, 9, 8, 5, 0, 7, 3, 7, 7, 7, 4, 3, 8, 0, 3, 9, 5, 3, 0, 3, 2, 0, 9, 9, 4, 8, 7, 9, 3, 3, 6, 3, 4, 1, 7, 7, 2, 1, 1, 5, 0, 7, 8, 4, 4, 4, 7, 7, 3, 2, 5, 1
Offset: 2

Views

Author

Paolo Xausa, Jun 20 2025

Keywords

Comments

The elongated pentagonal orthobirotunda is Johnson solid J_42.
Also the volume of an elongated pentagonal gyrobirotunda (Johnson solid J_43) with unit edge.

Examples

			21.52973477918753764625171850149755722709850737774...
		

Crossrefs

Cf. A179451 (surface area - 10), A344149 (surface area + 20).

Programs

  • Mathematica
    First[RealDigits[(45 + 17*Sqrt[5] + 15*Sqrt[5 + Sqrt[20]])/6, 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["J42", "Volume"], 10, 100]]

Formula

Equals (45 + 17*sqrt(5) + 15*sqrt(5 + 2*sqrt(5)))/6 = (45 + 17*A002163 + 15*sqrt(5 + A010476))/6.
Equals the largest root of 1296*x^4 - 38880*x^3 + 252360*x^2 - 329400*x - 332975.

A179453 Decimal expansion of the inradius of an icosidodecahedron with edge length 1.

Original entry on oeis.org

1, 4, 6, 3, 5, 2, 5, 4, 9, 1, 5, 6, 2, 4, 2, 1, 1, 3, 6, 1, 5, 3, 4, 4, 0, 1, 2, 5, 7, 7, 4, 2, 2, 8, 5, 8, 8, 2, 9, 0, 2, 3, 1, 8, 8, 4, 8, 5, 4, 3, 2, 2, 1, 4, 6, 6, 0, 1, 5, 8, 6, 4, 6, 7, 0, 2, 8, 9, 4, 5, 3, 4, 7, 1, 1, 4, 1, 7, 6, 8, 3, 7, 2, 8, 0, 4, 0, 5, 4, 0, 3, 1, 4, 2, 0, 4, 3, 3, 5, 3, 1, 1, 3, 5, 6
Offset: 1

Views

Author

Keywords

Comments

Icosidodecahedron: 32 faces, 30 vertices, and 60 edges.

Examples

			1.46352549156242113615344012577422858829023188485432214660158646702894...
		

Crossrefs

Programs

Formula

Digits of (5+3*sqrt(5))/8.
Previous Showing 11-19 of 19 results.