A195009
Triangle read by rows, T(n,k) = k^n*A056040(n), n>=0, 0<=k<=n.
Original entry on oeis.org
1, 0, 1, 0, 2, 8, 0, 6, 48, 162, 0, 6, 96, 486, 1536, 0, 30, 960, 7290, 30720, 93750, 0, 20, 1280, 14580, 81920, 312500, 933120, 0, 140, 17920, 306180, 2293760, 10937500, 39191040, 115296020, 0, 70, 17920, 459270, 4587520, 27343750, 117573120, 403536070, 1174405120
Offset: 0
1
0, 1
0, 2, 8
0, 6, 48, 162
0, 6, 96, 486, 1536
0, 30, 960, 7290, 30720, 93750
0, 20, 1280, 14580, 81920, 312500, 933120
-
swing := n -> n!/iquo(n,2)!^2: pow := (n,k) -> if k=0 and n=0 then 1 else n^k fi: A195009 := (n,k) -> pow(k,n)*swing(n):
# Formula:
omega := proc(x) BesselI(0,2*m*x)+(2*m*x+1)*BesselI(1,2*m*x) end:
f := n -> `if`(irem(n,2)=1,(n+1)/2,1/(n+1)): A195009 := proc(n,k)
limit(f(n)*(D@@n)(omega)(x),x=0); subs(m=k,%) end;
-
sf[n_] := With[{f = Floor[n/2]}, Pochhammer[f+1, n-f]/f!]; t[0, 0] = 1; t[n_, k_] := k^n*sf[n]; Table[t[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 29 2013 *)
A163081
Primes of the form p$ + 1 where p is prime, where '$' denotes the swinging factorial (A056040).
Original entry on oeis.org
3, 7, 31, 4808643121, 483701705079089804581, 3283733939424401442167506310317720418331001
Offset: 1
3 and 3$ + 1 = 7 are prime, so 7 is a member.
A163082
Primes of the form p$ - 1 where p is prime, where '$' denotes the swinging factorial (A056040).
Original entry on oeis.org
5, 29, 139, 12011, 5651707681619, 386971244197199, 35257120210449712895193719, 815027488562171580969632861193966578650499
Offset: 1
3 and 3$ - 1 = 5 are prime, so 5 is a member.
A163640
The radical of the swinging factorial A056040 for odd indices.
Original entry on oeis.org
1, 6, 30, 70, 210, 462, 6006, 4290, 72930, 461890, 1939938, 4056234, 6760390, 1560090, 6463230, 200360130, 2203961430, 907513530, 33578000610, 22974421470, 941951280270, 5786272150230, 526024740930, 1074920122770, 7524440859390, 25583098921926, 104300326374006, 1912172650190110
Offset: 0
(2*5+1)$ = 2772 = 2^2*3^2*7*11. Therefore a(5) = 2*3*7*11 = 462.
-
a := proc(n) local p; mul(p,p=numtheory[factorset]((2*n+1)!/iquo(2*n+1,2)!^2)) end:
-
sf[n_] := With[{f = Floor[n/2]}, Pochhammer[f+1, n-f]/f!]; a[n_] := Times @@ FactorInteger[sf[2*n + 1]][[All, 1]]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Jul 30 2013 *)
A163644
Product of primes which do not exceed n and do not divide the swinging factorial n$ (A056040).
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 3, 3, 3, 1, 5, 5, 5, 5, 35, 7, 7, 7, 21, 21, 105, 5, 55, 55, 165, 33, 429, 143, 1001, 1001, 1001, 1001, 1001, 91, 1547, 221, 221, 221, 4199, 323, 323, 323, 2261, 2261, 24871, 24871, 572033, 572033, 572033, 81719, 408595, 24035, 312455
Offset: 0
a(20) = 105 because in the prime-factorization of 20$ the primes 3, 5 and 7 are missing and 3*5*7 = 105.
-
a := proc(n) local p; mul(p,p=select(isprime,{$1..n})
minus numtheory[factorset](n!/iquo(n,2)!^2)) end:
-
A034386[x_] := Apply[Times, Table[Prime[w], {w, 1, PrimePi[x]}]];
sf[n_] := With[{f = Floor[n/2]}, Pochhammer[f + 1, n - f]/f!];
A163641[0] = 1; A163641[n_] := Times @@ FactorInteger[sf[n]][[All, 1]]; Join[{1}, Table[A034386[n]/A163641[n], {n, 1, 50}]] (* G. C. Greubel, Aug 01 2017 *)
A230714
a(n) = lcm(1,2,...,n)*a(floor(n/2))^2 for n > 0, a(0) = 1.
Original entry on oeis.org
1, 1, 2, 6, 48, 240, 2160, 15120, 1935360, 5806080, 145152000, 1596672000, 129330432000, 1681295616000, 82383485184000, 82383485184000, 2699542042509312000, 45892214722658304000, 413029932503924736000, 7847568717574569984000, 4904730448484106240000000
Offset: 0
-
a := n -> `if`(n = 0, 1, lcm(seq(i,i=1..n))*a(floor(n/2))^2): seq(a(n),n=0..20);
-
Fold[Append[#1, Apply[LCM, Range@ #2] #1[[Floor[#2/2] + 1]]^2 ] &, {1}, Range@ 20] (* Michael De Vlieger, Mar 04 2018 *)
-
a(n)=lcm(vector(n,i,i))*if(n>3,a(n\2)^2,1) \\ Charles R Greathouse IV, Oct 31 2013
-
def A230714(n):
return factorial(n)*A205958(n)
[A230714(n) for n in (0..20)]
A349269
Triangle read by rows, T(n, k) = (n - k)! * k! / floor(k / 2)! ^ 2.
Original entry on oeis.org
1, 1, 1, 2, 1, 2, 6, 2, 2, 6, 24, 6, 4, 6, 6, 120, 24, 12, 12, 6, 30, 720, 120, 48, 36, 12, 30, 20, 5040, 720, 240, 144, 36, 60, 20, 140, 40320, 5040, 1440, 720, 144, 180, 40, 140, 70, 362880, 40320, 10080, 4320, 720, 720, 120, 280, 70, 630
Offset: 0
[0] 1;
[1] 1, 1;
[2] 2, 1, 2;
[3] 6, 2, 2, 6;
[4] 24, 6, 4, 6, 6;
[5] 120, 24, 12, 12, 6, 30;
[6] 720, 120, 48, 36, 12, 30, 20;
[7] 5040, 720, 240, 144, 36, 60, 20, 140;
[8] 40320, 5040, 1440, 720, 144, 180, 40, 140, 70;
[9] 362880, 40320, 10080, 4320, 720, 720, 120, 280, 70, 630;
-
T := (n, k) -> (n - k)!*k! / iquo(k,2)! ^ 2:
seq(seq(T(n, k), k = 0..n), n = 0..9);
A163945
Triangle interpolating between (-1)^n (A033999) and the swinging factorial function (A056040) restricted to odd indices (2n+1)$ (A002457), read by rows.
Original entry on oeis.org
1, -1, 6, 1, -12, 30, -1, 18, -90, 140, 1, -24, 180, -560, 630, -1, 30, -300, 1400, -3150, 2772, 1, -36, 450, -2800, 9450, -16632, 12012, -1, 42, -630, 4900, -22050, 58212, -84084, 51480, 1, -48, 840, -7840, 44100, -155232, 336336, -411840, 218790
Offset: 0
Triangle begins:
1;
-1, 6;
1, -12, 30;
-1, 18, -90, 140;
1, -24, 180, -560, 630;
-1, 30, -300, 1400, -3150, 2772;
1, -36, 450, -2800, 9450, -16632, 12012;
Row sums are the inverse binomial transform of the beta numbers (
A163872).
-
swing := proc(n) option remember; if n = 0 then 1 elif
irem(n, 2) = 1 then swing(n-1)*n else 4*swing(n-1)/n fi end:
a := proc(n, k) (-1)^(n-k)*binomial(n,k)*swing(2*k+1) end:
seq(print(seq(a(n,k),k=0..n)),n=0..8);
-
T[n_,k_] := ((-1)^(Mod[k,2]+n)*((2*k+1)!/(k!)^2)*Binomial[n,n-k]);
Flatten[Table[T[n,k],{n,0,8},{k,0,n}]] (* Detlef Meya, Oct 07 2023 *)
Comments