cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-48 of 48 results.

A195009 Triangle read by rows, T(n,k) = k^n*A056040(n), n>=0, 0<=k<=n.

Original entry on oeis.org

1, 0, 1, 0, 2, 8, 0, 6, 48, 162, 0, 6, 96, 486, 1536, 0, 30, 960, 7290, 30720, 93750, 0, 20, 1280, 14580, 81920, 312500, 933120, 0, 140, 17920, 306180, 2293760, 10937500, 39191040, 115296020, 0, 70, 17920, 459270, 4587520, 27343750, 117573120, 403536070, 1174405120
Offset: 0

Views

Author

Peter Luschny, Sep 07 2011

Keywords

Examples

			                     1
                    0, 1
                  0, 2, 8
               0, 6, 48, 162
            0, 6, 96, 486, 1536
       0, 30, 960, 7290, 30720, 93750
0, 20, 1280, 14580, 81920, 312500, 933120
		

Programs

  • Maple
    swing := n -> n!/iquo(n,2)!^2: pow := (n,k) -> if k=0 and n=0 then 1 else n^k fi: A195009 := (n,k) -> pow(k,n)*swing(n):
    # Formula:
    omega := proc(x) BesselI(0,2*m*x)+(2*m*x+1)*BesselI(1,2*m*x) end:
    f := n -> `if`(irem(n,2)=1,(n+1)/2,1/(n+1)): A195009 := proc(n,k)
    limit(f(n)*(D@@n)(omega)(x),x=0); subs(m=k,%) end;
  • Mathematica
    sf[n_] := With[{f = Floor[n/2]}, Pochhammer[f+1, n-f]/f!]; t[0, 0] = 1; t[n_, k_] := k^n*sf[n]; Table[t[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 29 2013 *)

Formula

T(n,k) = f(n)*lim(x=0, (d^n/dx)(BesselI(0,2*k*x)+(2*k*x+1) *BesselI(1,2*k*x) where f(n) = (n+1)/2 if n is odd, 1/(n+1) otherwise.

A163081 Primes of the form p$ + 1 where p is prime, where '$' denotes the swinging factorial (A056040).

Original entry on oeis.org

3, 7, 31, 4808643121, 483701705079089804581, 3283733939424401442167506310317720418331001
Offset: 1

Views

Author

Peter Luschny, Jul 21 2009

Keywords

Comments

The values of p are 2, 3, 5, 31, 67, 139 which is A163079. Subsequence of A163075 (primes of the form k$ + 1).

Examples

			3 and 3$ + 1 = 7 are prime, so 7 is a member.
		

Crossrefs

Programs

  • Maple
    a := proc(n) select(isprime,[$2..n]); select(isprime, map(x -> A056040(x)+1,%)) end:

A163082 Primes of the form p$ - 1 where p is prime, where '$' denotes the swinging factorial (A056040).

Original entry on oeis.org

5, 29, 139, 12011, 5651707681619, 386971244197199, 35257120210449712895193719, 815027488562171580969632861193966578650499
Offset: 1

Views

Author

Peter Luschny, Jul 21 2009

Keywords

Comments

The first values of p are 3, 5, 7, 13, 41 from A163080. Subsequence of A163076 (primes of the form k$ - 1).

Examples

			3 and 3$ - 1 = 5 are prime, so 5 is a member.
		

Crossrefs

Programs

  • Maple
    a := proc(n) select(isprime,[$2..n]); select(isprime, map(x -> A056040(x)-1,%)) end:

A163640 The radical of the swinging factorial A056040 for odd indices.

Original entry on oeis.org

1, 6, 30, 70, 210, 462, 6006, 4290, 72930, 461890, 1939938, 4056234, 6760390, 1560090, 6463230, 200360130, 2203961430, 907513530, 33578000610, 22974421470, 941951280270, 5786272150230, 526024740930, 1074920122770, 7524440859390, 25583098921926, 104300326374006, 1912172650190110
Offset: 0

Views

Author

Peter Luschny, Aug 02 2009

Keywords

Comments

Let $ denote the swinging factorial. a(n) is the radical of (2*n+1)$ which is the product of the prime numbers dividing (2*n+1)$. It is the largest squarefree divisor of (2*n+1)$, and so also described as the squarefree kernel of (2*n+1)$.

Examples

			(2*5+1)$ = 2772 = 2^2*3^2*7*11. Therefore a(5) = 2*3*7*11 = 462.
		

Crossrefs

A056040(n) = n$, A163641(n) = rad(n$), A080397(n) = rad((2n)$).

Programs

  • Maple
    a := proc(n) local p; mul(p,p=numtheory[factorset]((2*n+1)!/iquo(2*n+1,2)!^2)) end:
  • Mathematica
    sf[n_] := With[{f = Floor[n/2]}, Pochhammer[f+1, n-f]/f!]; a[n_] := Times @@ FactorInteger[sf[2*n + 1]][[All, 1]]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Jul 30 2013 *)

Extensions

More terms from Michel Marcus, Aug 22 2025

A163644 Product of primes which do not exceed n and do not divide the swinging factorial n$ (A056040).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 3, 3, 3, 1, 5, 5, 5, 5, 35, 7, 7, 7, 21, 21, 105, 5, 55, 55, 165, 33, 429, 143, 1001, 1001, 1001, 1001, 1001, 91, 1547, 221, 221, 221, 4199, 323, 323, 323, 2261, 2261, 24871, 24871, 572033, 572033, 572033, 81719, 408595, 24035, 312455
Offset: 0

Views

Author

Peter Luschny, Aug 02 2009

Keywords

Examples

			a(20) = 105 because in the prime-factorization of 20$ the primes 3, 5 and 7 are missing and 3*5*7 = 105.
		

Crossrefs

Programs

  • Maple
    a := proc(n) local p; mul(p,p=select(isprime,{$1..n})
    minus numtheory[factorset](n!/iquo(n,2)!^2)) end:
  • Mathematica
    A034386[x_] := Apply[Times, Table[Prime[w], {w, 1, PrimePi[x]}]];
    sf[n_] := With[{f = Floor[n/2]}, Pochhammer[f + 1, n - f]/f!];
    A163641[0] = 1; A163641[n_] := Times @@ FactorInteger[sf[n]][[All, 1]]; Join[{1}, Table[A034386[n]/A163641[n], {n, 1, 50}]] (* G. C. Greubel, Aug 01 2017 *)

Formula

a(n) = primorial(n) / rad(n$) = A034386(n) / A163641(n).

A230714 a(n) = lcm(1,2,...,n)*a(floor(n/2))^2 for n > 0, a(0) = 1.

Original entry on oeis.org

1, 1, 2, 6, 48, 240, 2160, 15120, 1935360, 5806080, 145152000, 1596672000, 129330432000, 1681295616000, 82383485184000, 82383485184000, 2699542042509312000, 45892214722658304000, 413029932503924736000, 7847568717574569984000, 4904730448484106240000000
Offset: 0

Views

Author

Peter Luschny, Oct 28 2013

Keywords

Comments

This sequence essentially documents the identity sqrt(A000142(n)*A205958(n)*A056040(n)*A180000(n)) = A003418(n)*a(floor(n/2)). Some interest derives from the fact that A056040 and A180000 can be computed by a structurally identical algorithm which can be used to compute A205958 and A000142, the latter being the fastest algorithm presently known to compute the factorial numbers. a(n) relates these numbers with lcm(1,2,3,...,n).

Crossrefs

Programs

  • Maple
    a := n -> `if`(n = 0, 1, lcm(seq(i,i=1..n))*a(floor(n/2))^2): seq(a(n),n=0..20);
  • Mathematica
    Fold[Append[#1, Apply[LCM, Range@ #2] #1[[Floor[#2/2] + 1]]^2 ] &, {1}, Range@ 20] (* Michael De Vlieger, Mar 04 2018 *)
  • PARI
    a(n)=lcm(vector(n,i,i))*if(n>3,a(n\2)^2,1) \\ Charles R Greathouse IV, Oct 31 2013
  • Sage
    def A230714(n):
        return factorial(n)*A205958(n)
    [A230714(n) for n in (0..20)]
    

Formula

a(n) = A205958(n)*n!.

A349269 Triangle read by rows, T(n, k) = (n - k)! * k! / floor(k / 2)! ^ 2.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 6, 2, 2, 6, 24, 6, 4, 6, 6, 120, 24, 12, 12, 6, 30, 720, 120, 48, 36, 12, 30, 20, 5040, 720, 240, 144, 36, 60, 20, 140, 40320, 5040, 1440, 720, 144, 180, 40, 140, 70, 362880, 40320, 10080, 4320, 720, 720, 120, 280, 70, 630
Offset: 0

Views

Author

Peter Luschny, Nov 13 2021

Keywords

Comments

Interpolates between the factorial numbers (A000142) and the swinging factorial numbers (A056040).
The identity T(n, 0) = T(n, n)*T(floor(n/2), 0)^2 was investigated as a basis for an efficient implementation of the computation of the factorial numbers (see link).

Examples

			[0]      1;
[1]      1,     1;
[2]      2,     1,     2;
[3]      6,     2,     2,    6;
[4]     24,     6,     4,    6,   6;
[5]    120,    24,    12,   12,   6,  30;
[6]    720,   120,    48,   36,  12,  30,  20;
[7]   5040,   720,   240,  144,  36,  60,  20, 140;
[8]  40320,  5040,  1440,  720, 144, 180,  40, 140, 70;
[9] 362880, 40320, 10080, 4320, 720, 720, 120, 280, 70, 630;
		

Crossrefs

Cf. A349270 (row sums), A193282 (central coeffs.), A000142, A056040, A180064.

Programs

  • Maple
    T := (n, k) -> (n - k)!*k! / iquo(k,2)! ^ 2:
    seq(seq(T(n, k), k = 0..n), n = 0..9);

Formula

T(n, k) divides T(n, 0) for 0 <= k <= n.
Product_{k=0..n} T(n, k) is a square.

A163945 Triangle interpolating between (-1)^n (A033999) and the swinging factorial function (A056040) restricted to odd indices (2n+1)$ (A002457), read by rows.

Original entry on oeis.org

1, -1, 6, 1, -12, 30, -1, 18, -90, 140, 1, -24, 180, -560, 630, -1, 30, -300, 1400, -3150, 2772, 1, -36, 450, -2800, 9450, -16632, 12012, -1, 42, -630, 4900, -22050, 58212, -84084, 51480, 1, -48, 840, -7840, 44100, -155232, 336336, -411840, 218790
Offset: 0

Views

Author

Peter Luschny, Aug 07 2009

Keywords

Examples

			Triangle begins:
   1;
  -1,   6;
   1, -12,   30;
  -1,  18,  -90,   140;
   1, -24,  180,  -560,   630;
  -1,  30, -300,  1400, -3150,   2772;
   1, -36,  450, -2800,  9450, -16632, 12012;
		

Crossrefs

Row sums are the inverse binomial transform of the beta numbers (A163872).

Programs

  • Maple
    swing := proc(n) option remember; if n = 0 then 1 elif
    irem(n, 2) = 1 then swing(n-1)*n else 4*swing(n-1)/n fi end:
    a := proc(n, k) (-1)^(n-k)*binomial(n,k)*swing(2*k+1) end:
    seq(print(seq(a(n,k),k=0..n)),n=0..8);
  • Mathematica
    T[n_,k_] := ((-1)^(Mod[k,2]+n)*((2*k+1)!/(k!)^2)*Binomial[n,n-k]);
    Flatten[Table[T[n,k],{n,0,8},{k,0,n}]] (* Detlef Meya, Oct 07 2023 *)

Formula

For n >= 0, k >= 0, T(n, k) = (-1)^(n-k) binomial(n,k) (2*k+1)$ where i$ denotes the swinging factorial of i (A056040).
Conjectural g.f.: sqrt(1 + t)/(1 + (1 - 4*x)*t)^(3/2) = 1 + (-1 + 6*x)*t + (1 - 12*x + 30*x^2)*t^2 + .... - Peter Bala, Nov 10 2013
T(n, k) = ((-1)^(k mod 2) + n)*((2*k + 1)!/(k!)^2)*binomial(n, n - k). - Detlef Meya, Oct 07 2023
Previous Showing 41-48 of 48 results.