cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 35 results. Next

A239750 Number of ordered pairs of endofunctions (f,g) on a set of n elements satisfying g(f(x)) = f(f(f(x))).

Original entry on oeis.org

1, 1, 6, 87, 2200, 84245, 4492656, 315937195, 28186856832, 3099006365769, 410478164588800, 64323095036300111, 11748771067445148672, 2470422069374379054493, 591735532838657160296448, 160004357420756572368889875, 48458574881000820765562863616
Offset: 0

Views

Author

Chad Brewbaker, Mar 26 2014

Keywords

Comments

As observed by Yuval Filmus, this also counts pairs (f,g) that satisfy g(f(x)) = f^{k}(x) for k >= 1. - Chad Brewbaker, Mar 27 2014

Crossrefs

Column k=1 of A245980.

Programs

  • Maple
    a:= n-> add(binomial(n, k)*k^n*(n-1)^(n-k), k=0..n):
    seq(a(n), n=0..20);  # Alois P. Heinz, Jul 23 2014
  • Mathematica
    a[n_] := If[n<2, 1, Sum[Binomial[n, k]*k^n*(n-1)^(n-k), {k, 0, n}]];
    a /@ Range[0, 20] (* Jean-François Alcover, Oct 03 2019, after Alois P. Heinz *)

Formula

a(n) = Sum_{k=0..n} C(n,k) * k^n * (n-1)^(n-k) = Sum_{k=0..n} C(n,k) * A048993(n,k) * k! * n^(n-k). - Alois P. Heinz, Jul 23 2014

Extensions

a(6)-a(7) from Giovanni Resta, Mar 26 2014
a(8)-a(16) from Alois P. Heinz, Jul 17 2014

A239768 Number of pairs of functions (f,g) from a set of n elements into itself satisfying f(x) = f(g(f(x))).

Original entry on oeis.org

1, 1, 10, 195, 6808, 362745, 26848656, 2621263519, 324981308800, 49669569764433, 9146879704748800, 1993011341241988551, 506190915590699695104, 148000190814308473203433, 49289886405448749446514688, 18529196186934893511062427375, 7800708229072237749055062900736, 3652486190893312491910941333813537
Offset: 0

Views

Author

Chad Brewbaker, Mar 26 2014

Keywords

Crossrefs

Cf. A181162.

Programs

  • Mathematica
    A[n_] := If[n == 0, 1, Sum[(n!/(n - k)!) Binomial[n, k] (n k)^(n - k), {k, 1, n}]]
    Table[A[n],{n,10}] (* David Einstein, Oct 10 2016 *)
  • PARI
    a(n) = sum(k= 0, n, (n!/(n-k)!)*binomial(n,k)*(n*k)^(n-k)); \\ Michel Marcus, Oct 11 2016; corrected Jun 13 2022

Formula

a(n) = Sum_{k=0..n} (n!/(n-k)!) * C(n,k) * (n*k)^(n-k). - David Einstein, Oct 10 2016

Extensions

a(6)-a(7) from Giovanni Resta, Mar 28 2014
a(8)-a(17) from David Einstein, Oct 10 2016

A239777 Number of pairs of functions f, g on a size n set into itself satisfying f(g(g(x))) = f(x).

Original entry on oeis.org

1, 1, 12, 249, 7744, 326745, 17773056, 1197261289, 97165842432, 9294416254161, 1030298497753600, 130527793649586201, 18685034341191917568, 2993332161753700720681, 532270629438646194561024, 104316725427708352041239625, 22394627939996943667912769536
Offset: 0

Views

Author

Chad Brewbaker, Mar 26 2014

Keywords

Crossrefs

Column k=2 of A245910.

Programs

  • Maple
    s:= proc(n, i) option remember; `if`(i=0, [[]],
           map(x-> seq([j, x[]], j=1..n), s(n, i-1)))
        end:
    a:= proc(n) (l-> add(add(`if`([true$n]=[seq(evalb(
           f[g[g[i]]]=f[i]), i=1..n)], 1, 0), g=l), f=l))(s(n$2))
        end:
    seq(a(n), n=0..5);  # Alois P. Heinz, Jul 16 2014
    # second Maple program:
    with(combinat):
    b:= proc(n, i) option remember; `if`(n=0 or i=1, x^n,
          expand(add((i-1)!^j*multinomial(n, n-i*j, i$j)/j!
           *x^((2-irem(i, 2))*j)*b(n-i*j, i-1), j=0..n/i)))
        end:
    a:= n-> add((p-> add(n^i*binomial(n-1, k-1)*n^(n-k)*
        coeff(p, x, i), i=0..degree(p)))(b(k$2)), k=0..n):
    seq(a(n), n=0..20);  # Alois P. Heinz, Aug 06 2014
  • Mathematica
    c[n_] := c[n] =
        Sum[(n - 1)! n^(n - k)/(n - k)! t^(1 + Mod[k + 1, 2]), {k, 1, n}]
    d[0] = 1
    d[n_] := d[n] = Sum[Binomial[n - 1, k]*d[k]*c[n - k], {k, 0, n - 1}]
    a[n_] := d[n] /. t -> n
    Table[a[n], {n, 1, 10}] (* David Einstein, Nov 02 2016*)

Extensions

a(6)-a(7) from Giovanni Resta, Mar 28 2014
a(8)-a(16) from Alois P. Heinz, Aug 06 2014

A254529 a(n) = n! * (number of mapping patterns on n).

Original entry on oeis.org

1, 1, 6, 42, 456, 5640, 93600, 1728720, 38344320, 948931200, 26555558400, 817935148800, 27735629644800, 1020596255078400, 40642432179148800, 1737890081351424000, 79498734605402112000, 3871319396080840704000, 200017645344178421760000, 10925549584125028909056000
Offset: 0

Views

Author

Martin Fuller, Feb 01 2015

Keywords

Comments

a(n) is the number of ordered pairs (p, f) such that p f = f p, where p is a permutation and f is an endofunction.

Crossrefs

Formula

a(n) = n! * A001372(n). - Joerg Arndt, Feb 01 2015

A254570 The number of unordered pairs (f,g) of functions from {1..n} to itself such that fg=gf (i.e., f(g(i))=g(f(i)) for all i) where f and g are distinct.

Original entry on oeis.org

0, 3, 57, 1284, 34220, 1098720, 41579328, 1832244288, 92830006368, 5353120671120, 348383876993900, 25409389391925264, 2064511110000765192, 185885772163424273304, 18458953746901624026000, 2012589235930543617012480, 239897773975844015012351360, 31132547318002718989156350240, 4380969784826872849927354999092, 665896601825393760478978112600400
Offset: 1

Views

Author

Joerg Arndt, Feb 01 2015

Keywords

Examples

			The a(2) = 3 pairs of maps [2] -> [2] are:
01:  [ 1 1 ]  [ 1 2 ]
02:  [ 1 2 ]  [ 2 1 ]
03:  [ 1 2 ]  [ 2 2 ]
		

Crossrefs

Cf. A181162 (ordered pairs), A254569 (unordered pairs).

Formula

a(n) = (A181162(n) - n^n)/2.

A239772 Number of pairs of functions f, g from a size n set into itself satisfying f(f(x)) = f(g(f(x))).

Original entry on oeis.org

1, 1, 10, 231, 9688, 603445, 52284816, 5951141035, 856275088768, 151330313546361, 32121886627244800, 8043522214887251191, 2341436450503523834880, 782684599861773582454741, 297337340445195054893615104, 127232791559907423447708979875, 60852096942278280426353043275776, 32309821732254010064727052008198385
Offset: 0

Views

Author

Chad Brewbaker, Mar 26 2014

Keywords

Crossrefs

Programs

  • Maple
    s:= proc(n, i) option remember; `if`(i=0, [[]],
           map(x-> seq([j, x[]], j=1..n), s(n, i-1)))
        end:
    a:= proc(n) local l; l:= s(n$2);
           add(add(`if`([seq(evalb(f[f[i]]=f[g[f[i]]]),
           i=1..n)]=[true$n], 1, 0), g=l), f=l)
        end:
    seq(a(n), n=0..5);  # Alois P. Heinz, Jul 16 2014
  • Sage
    def a239772(n):
        L. = LaurentPolynomialRing(QQ)
        R. = PowerSeriesRing(L, default_prec=n+1)
        h = 1 - sum((y*(1+i*z))^i*n^(i-1)/factorial(i) for i in (1..n))//z
        return h.inverse()[n][0] * factorial(n) # Max Alekseyev, Jan 10 2025

Formula

Formula is given in the Sage code. - Max Alekseyev, Jan 10 2025

Extensions

a(6)-a(7) from Giovanni Resta, Mar 28 2014
Terms a(8) onward from Max Alekseyev, Jan 10 2025

A239775 Number of pairs of functions f, g from a size n set into itself satisfying f(f(g(x))) = f(f(x)).

Original entry on oeis.org

1, 1, 10, 297, 13264, 851325, 74078496, 8325102331, 1169885964640, 200545429514697, 41101718746949920
Offset: 0

Views

Author

Chad Brewbaker, Mar 26 2014

Keywords

Crossrefs

Programs

  • Maple
    s:= proc(n, i) option remember; `if`(i=0, [[]],
           map(x-> seq([j, x[]], j=1..n), s(n, i-1)))
        end:
    a:= proc(n) (l-> add(add(`if`([true$n]=[seq(evalb(
           f[f[g[i]]]=f[f[i]]), i=1..n)], 1, 0), g=l), f=l))(s(n$2))
        end:
    seq(a(n), n=0..5);  # Alois P. Heinz, Jul 16 2014
  • Sage
    # from Max Alekseyev, Dec 19 2024
    from collections import Counter
    def a239775(n): return sum( prod(k^k for k in Counter(f[t] for t in f).values()) for f in Tuples(range(n),n) )

Extensions

a(6)-a(7) from Giovanni Resta, Mar 28 2014
a(8)-a(10) from Max Alekseyev, Dec 19 2024

A239778 Number of pairs of functions f, g from a size n set into itself satisfying f(f(f(x))) = f(g(g(x))).

Original entry on oeis.org

1, 1, 12, 255, 8968, 452485, 31456656, 2899786855, 343386848064
Offset: 0

Views

Author

Chad Brewbaker, Mar 26 2014

Keywords

Crossrefs

Programs

  • Maple
    s:= proc(n, i) option remember; `if`(i=0, [[]],
           map(x-> seq([j, x[]], j=1..n), s(n, i-1)))
        end:
    a:= proc(n) (l-> add(add(`if`([true$n]=[seq(evalb(
           f[f[f[i]]]=f[g[g[i]]]), i=1..n)], 1, 0), g=l), f=l))(s(n$2))
        end:
    seq(a(n), n=0..5);  # Alois P. Heinz, Jul 16 2014

Extensions

a(6)-a(7) from Giovanni Resta, Mar 28 2014
a(8) from Lucas A. Brown, Oct 23 2024

A239779 Number of pairs of functions f, g, from a size n set into itself satisfying f(g(g(x))) = g(g(f(x))).

Original entry on oeis.org

1, 1, 12, 267, 9088, 425465, 27039096, 2261637637
Offset: 0

Views

Author

Chad Brewbaker, Mar 26 2014

Keywords

Crossrefs

Programs

  • Maple
    s:= proc(n, i) option remember; `if`(i=0, [[]],
           map(x-> seq([j, x[]], j=1..n), s(n, i-1)))
        end:
    a:= proc(n) (l-> add(add(`if`([true$n]=[seq(evalb(
           f[g[g[i]]]=g[g[f[i]]]), i=1..n)], 1, 0), g=l), f=l))(s(n$2))
        end:
    seq(a(n), n=0..5);  # Alois P. Heinz, Jul 16 2014

Extensions

a(6)-a(7) from Giovanni Resta, Mar 28 2014

A239781 Number of pairs of functions f, g from a size n set into itself satisfying f(g(x)) = f(f(g(x))).

Original entry on oeis.org

1, 1, 12, 321, 15280, 1127745, 118507536, 16731979033, 3044595017472, 692050790547297, 191796657547052800, 63563842088104098081, 24793529117087476242432, 11232023076988690608825505, 5843573099019743656060348416, 3457799186387568447755745563625
Offset: 0

Views

Author

Chad Brewbaker, Mar 26 2014

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> add(binomial(n, k)*add(binomial(n-k, i)*k^i*
            (n-k-1)^(n-k-i)*(k+i)^n, i=0..n-k), k=0..n):
    seq(a(n), n=0..20);  # Alois P. Heinz, Jul 17 2014
  • Mathematica
    Unprotect[Power]; 0^0 = 1; a[n_] := Sum[Binomial[n, k]*Sum[Binomial[n-k, i]*k^i*(n-k-1)^(n-k-i)*(k+i)^n, {i, 0, n-k}], {k, 0, n}]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Feb 28 2017, after Alois P. Heinz *)

Formula

a(n) = Sum_{k=0..n} C(n,k) * Sum_{i=0..n-k} C(n-k,i) * k^i * (n-k-1)^(n-k-i) * (k+i)^n. - Alois P. Heinz, Jul 17 2014

Extensions

a(6)-a(7) from Giovanni Resta, Mar 28 2014
a(8)-a(15) from Alois P. Heinz, Jul 17 2014
Previous Showing 11-20 of 35 results. Next