cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A006637 Expansion of (2 - x)^4/(1 - x)^8.

Original entry on oeis.org

16, 96, 344, 952, 2241, 4712, 9108, 16488, 28314, 46552, 73788, 113360, 169507, 247536, 354008, 496944, 686052, 932976, 1251568, 1658184, 2172005, 2815384, 3614220, 4598360, 5802030, 7264296, 9029556, 11148064, 13676487, 16678496, 20225392, 24396768, 29281208
Offset: 0

Views

Author

Keywords

Comments

Former name: From generalized Catalan numbers. - G. C. Greubel, Sep 03 2025

References

  • H. M. Finucan, Some decompositions of generalized Catalan numbers, pp. 275-293 of Combinatorial Mathematics IX. Proc. Ninth Australian Conference (Brisbane, August 1981). Ed. E. J. Billington, S. Oates-Williams and A. P. Street. Lecture Notes Math., 952. Springer-Verlag, 1982.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    A006637:= func< n | (n+1)*(n+2)*(n+3)*(n+5)*(n+14)*(n^2+31*n+192)/5040 >;
    [A006637(n): n in [0..40]]; // G. C. Greubel, Sep 03 2025
    
  • Mathematica
    Table[(n+1)*(n+2)*(n+3)*(n+5)*(n+14)*(n^2+31*n+192)/7!, {n,0,40}] (* G. C. Greubel, Sep 03 2025 *)
  • SageMath
    def A006637(n): return (n+1)*(n+2)*(n+3)*(n+5)*(n+14)*(n^2+31*n+192)//5040
    print([A006637(n) for n in range(41)]) # G. C. Greubel, Sep 03 2025

Formula

G.f.: (2-x)^4/(1-x)^8. - Sean A. Irvine, May 31 2017
a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8). - Wesley Ivan Hurt, Jun 18 2022
From G. C. Greubel, Sep 03 2025: (Start)
a(n) = Sum_{k=0..4} binomial(4, k)*binomial(n+k+3, k+3).
a(n) = (1/7!)*(n+1)*(n+2)*(n+3)*(n+5)*(n+14)*(n^2 + 31*n + 192).
E.g.f.: (1/7!)*(80640 + 403200*x + 423360*x^2 + 161280*x^3 + 27090*x^4 + 2142*x^5 + 77*x^6 + x^7)*exp(x). (End)

Extensions

a(6) and a(8) corrected and more terms from Sean A. Irvine, May 31 2017
New name by G. C. Greubel, Sep 03 2025

A253722 Triangle read by rows: coefficients of the partition polynomials for the reciprocal of the derivative of a power series, g(x)= 1/h'(x).

Original entry on oeis.org

1, -2, 4, -3, -8, 12, -4, 16, -36, 9, 16, -5, -32, 96, -54, -48, 24, 20, -6, 64, -240, 216, 128, -27, -144, -60, 16, 30, 24, -7, -128, 576, -720, -320, 216, 576, 160, -108, -96, -180, -72, 40, 36, 28, -8
Offset: 0

Views

Author

Tom Copeland, May 02 2015

Keywords

Comments

This entry contains the integer coefficients of the partition polynomials P(n;h_1,h_2,...,h_(n+1)) for the reciprocal g(x) of the derivative of a power series in terms of the coefficients of the power series; i.e., g(x) = 1/[dh(x)/dx] = 1/[h_1 + 2*h_2 * x + 3*h_3 * x^2 + ...] = sum[n>=0, (h_1)^(-(n+1)) * P(n;h_1,...,h_(n+1)) * x^n].
This is a signed refinement of reversed A181289. See A145271, A133437, and A133314 for relations to compositional and multiplicative inversions.

Examples

			Let h(x) = h_0 + h_1 * x + h_2 * x^2 + ... . Then g(x) = 1/h'(x) = 1/[h_1 + 2*h_2 * x + 3*h_3 * x^2 + ...] = (h_1)^(-1) P(0;h_1) + (h_1)^(-2) * P(1;h_1,h_2) * x + (h_1)^(-3) * P(2;h_1,h_2,h_3) * x^2 + ... , and, with h_n = (n'), the first few partition polynomials are
P(0;..)=  1
P(1;..)= -2 (2')
P(2;..)=  4 (2')^2 - 3 (3')(1')
P(3;..)= -8 (2')^3 + 12 (3')(2')(1') - 4 (4')(1')^2
P(4;..)= 16 (2')^4 - 36 (2')^2(3')(1') + [9 (3')^2 + 16 (4')(2')](1')^2 - 5 (5')(1')^3
P(5;..)= -32 (2')^5 + 96 (2')^3(3')(1') + [-54 (3')^2(2') - 48 (4')(2')^2](1')^2 + [24 (3')(4') + 20 (5')(2')](1')^3 - 6 (6')(1')^4
P(6;..)= 64 (2')^6 - 240 (2')^4(3')(1') + [216 (3')^2(2') + 128 (4')(2')^3](1')^2 - [27 (3')^3 + 144 (4')(3')(2') + 60 (5')(2')^2](1')^3 + [16 (4')^2 + 30 (5')(3') + 24 (6')(2')](1')^4 - 7 (7')(1')^5
		

Crossrefs

Programs

  • Mathematica
    rows[n_] := {{1}}~Join~With[{s = 1/(1 + Sum[(k+1) u[k] x^k, {k, n}] + O[x]^(n+1))}, Table[Coefficient[s, x^k Product[u[t], {t, p}]], {k, n}, {p, Reverse@Sort[Sort /@ IntegerPartitions[k]]}]];
    rows[7] // Flatten (* Andrey Zabolotskiy, Feb 19 2024 *)
  • PARI
    C(v)={my(S=Set(v)); (-1)^(#v)*(#v)!*prod(i=1, #S, my(x=S[i], e=#select(y-> y==x, v)); (x+1)^e/e! )}
    row(n)=[C(Vec(p)) | p<-Vecrev(partitions(n))]
    { for(n=0, 7, print(row(n))) } \\ Andrew Howroyd, Feb 19 2024

Formula

For the partition (1')^e(1)*(2')^e(2)*...*(n')^e(n) in P(m;...), the unsigned integer coefficient is [e(2)+e(3)+...+e(n)]! * [2^e(2)*3^e(3)*...*n^e(n)]/[e(2)!*e(3)!*...*e(n)!] with the sign determined by (-1)^[e(1) + m].
The partitions of P(m;..) are formed by adding one to each index of the partitions of m of Abramowitz and Stegun's partition table (p. 831; in the reversed order) and appending (1')^e(1) as a factor to obtain a partition of 2m.
Row sums are 1,-2,1,0,0,0,... . Row sums of the unsigned coefficients are A003480.

Extensions

Row 7 added by Andrey Zabolotskiy, Feb 19 2024
Previous Showing 11-12 of 12 results.