cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-28 of 28 results.

A181448 Numbers k such that 5 is the largest prime factor of k^2 - 1.

Original entry on oeis.org

4, 9, 11, 19, 26, 31, 49, 161
Offset: 1

Views

Author

Artur Jasinski, Oct 21 2010

Keywords

Comments

Numbers k such that A076605(k) = 3.
Sequence is finite and complete, for proof see A175607.
Search for terms can be restricted to the range from 2 to A175607(3) = 161; primepi(5) = 3.

Crossrefs

Programs

  • Magma
    [ n: n in [2..200] | m eq 5 where m is D[#D] where D is PrimeDivisors(n^2-1) ]; // Klaus Brockhaus, Feb 17 2011
    
  • Mathematica
    Select[Range[200], FactorInteger[#^2-1][[-1, 1]]==5&]
  • PARI
    is(n)=n=n^2-1; n>>=valuation(n,2); n/=3^valuation(n,3); n>1 && 5^valuation(n, 5)==n \\ Charles R Greathouse IV, Jul 01 2013

A181449 Numbers k such that 7 is the largest prime factor of k^2 - 1.

Original entry on oeis.org

6, 8, 13, 15, 29, 41, 55, 71, 97, 99, 127, 244, 251, 449, 4801, 8749
Offset: 1

Views

Author

Artur Jasinski, Oct 21 2010

Keywords

Comments

Numbers k such that A076605(k) = 7.
Sequence is finite and complete, for proof see A175607.
Search for terms can be restricted to the range from 2 to A175607(4) = 8749; primepi(7) = 4.

Crossrefs

Programs

  • Magma
    [ n: n in [2..9000] | m eq 7 where m is D[#D] where D is PrimeDivisors(n^2-1) ]; // Klaus Brockhaus, Feb 17 2011
    
  • Mathematica
    Select[Range[9000], FactorInteger[#^2-1][[-1, 1]]==7&]
  • PARI
    is(n)=n=n^2-1; forprime(p=2, 5, n/=p^valuation(n, p)); n>1 && 7^valuation(n, 7)==n \\ Charles R Greathouse IV, Jul 01 2013

A181450 Numbers k such that 11 is the largest prime factor of k^2 - 1.

Original entry on oeis.org

10, 21, 23, 34, 43, 65, 76, 89, 109, 111, 197, 199, 241, 351, 485, 769, 881, 1079, 6049, 19601
Offset: 1

Views

Author

Artur Jasinski, Oct 21 2010

Keywords

Comments

Numbers k such that A076605(k) = 11.
Sequence is finite and complete, for proof see A175607.
Search for terms can be restricted to the range from 2 to A175607(5) = 19601; primepi(11) = 5.

Crossrefs

Programs

  • Magma
    [ n: n in [2..20000] | m eq 11 where m is D[#D] where D is PrimeDivisors(n^2-1) ]; // Klaus Brockhaus, Feb 18 2011
    
  • Mathematica
    Select[Range[20000], FactorInteger[#^2-1][[-1, 1]]==11&]
  • PARI
    is(n)=n=n^2-1; forprime(p=2, 7, n/=p^valuation(n, p)); n>1 && 11^valuation(n, 11)==n \\ Charles R Greathouse IV, Jul 01 2013

A181451 Numbers k such that 13 is the largest prime factor of k^2 - 1.

Original entry on oeis.org

12, 14, 25, 27, 51, 53, 64, 79, 129, 131, 155, 181, 209, 274, 287, 337, 391, 649, 701, 703, 727, 846, 1249, 1351, 1457, 1574, 2001, 3431, 4159, 8191, 8449, 13311, 21295, 246401
Offset: 1

Views

Author

Artur Jasinski, Oct 21 2010

Keywords

Comments

Numbers k such that A076605(k) = 13.
Sequence is finite and complete, for proof see A175607.
Search for terms can be restricted to the range from 2 to A175607(6) = 246401; primepi(13) = 6.

Crossrefs

Programs

  • Magma
    [ n: n in [2..250000] | m eq 13 where m is D[#D] where D is PrimeDivisors(n^2-1) ]; // Klaus Brockhaus, Feb 18 2011
    
  • Mathematica
    Select[Range[250000], FactorInteger[#^2-1][[-1, 1]]==13&]
  • PARI
    is(n)=n=n^2-1; forprime(p=2, 11, n/=p^valuation(n, p)); n>1 && 13^valuation(n, 13)==n \\ Charles R Greathouse IV, Jul 01 2013

A181454 Numbers k such that 23 is the largest prime factor of k^2 - 1.

Original entry on oeis.org

22, 24, 45, 47, 91, 116, 137, 139, 183, 208, 229, 254, 298, 321, 323, 344, 415, 461, 505, 551, 599, 645, 781, 783, 919, 967, 1013, 1057, 1126, 1151, 1310, 1471, 1519, 1749, 1793, 2186, 2209, 2276, 2393, 2575, 2874, 2991, 3704, 3725, 4047, 4049, 4369
Offset: 1

Views

Author

Artur Jasinski, Oct 21 2010

Keywords

Comments

Numbers k such that A076605(k) = 23.
Sequence is finite, for proof see A175607.
Search for terms can be restricted to the range from 2 to A175607(9) = 10285001; primepi(23) = 9.

Crossrefs

Programs

  • Magma
    [ n: n in [2..300000] | m eq 23 where m is D[#D] where D is PrimeDivisors(n^2-1) ]; // Klaus Brockhaus, Feb 18 2011
    
  • Magma
    p:=(97*89*83*79*73*71)^5 *(67*61*59*53*47*43*41)^6 *(37*31*29)^7 *(23*19*17)^8 *13^9 *11^10 *7^13 *5^15 *3^23 *2^36; [ n: n in [2..10300000] | p mod (n^2-1) eq 0 and (D[#D] eq 23 where D is PrimeDivisors(n^2-1)) ]; // Klaus Brockhaus, Feb 24 2011
    
  • Mathematica
    jj=2^36*3^23*5^15*7^13*11^10*13^9*17^8*19^8*23^8*29^7*31^7*37^7*41^6 *43^6*47^6*53^6*59^6*61^6*67^6*71^5*73^5*79^5*83^5*89^5*97^5; rr ={};n = 2; While[n < 14000000, If[GCD[jj, n^2 - 1] == n^2 - 1, k = FactorInteger[n^2 - 1]; kk = Last[k][[1]]; If[kk == 23, AppendTo[rr, n]]]; n++ ]; rr
    Select[Range[300000], FactorInteger[#^2-1][[-1, 1]]==23&]
  • PARI
    is(n)=n=n^2-1; forprime(p=2, 19, n/=p^valuation(n, p)); n>1 && 23^valuation(n, 23)==n \\ Charles R Greathouse IV, Jul 01 2013

A181456 Numbers k such that 31 is the largest prime factor of k^2 - 1.

Original entry on oeis.org

30, 32, 61, 63, 92, 94, 125, 154, 185, 249, 309, 311, 342, 373, 404, 433, 495, 526, 528, 559, 681, 683, 714, 869, 898, 929, 991, 1055, 1084, 1177, 1241, 1301, 1427, 1520, 1611, 1673, 1735, 1799, 1861, 1921, 1954, 2047, 2107, 2419, 2696, 2729, 2851, 3037
Offset: 1

Views

Author

Artur Jasinski, Oct 21 2010

Keywords

Comments

Numbers k such that A076605(k) = 31.
Sequence is finite, for proof see A175607.
Search for terms can be restricted to the range from 2 to A175607(11) = 3222617399; primepi(31) = 11.

Crossrefs

Programs

  • Magma
    [ n: n in [2..300000] | m eq 31 where m is D[#D] where D is PrimeDivisors(n^2-1) ]; // Klaus Brockhaus, Feb 19 2011
    
  • Magma
    p:=(97*89*83*79*73*71)^5 *(67*61*59*53*47*43*41)^6 *(37*31*29)^7 *(23*19*17)^8 *13^9 *11^10 *7^13 *5^15 *3^23 *2^36; [ n: n in [2..50000000] | p mod (n^2-1) eq 0 and (D[#D] eq 31 where D is PrimeDivisors(n^2-1)) ]; // Klaus Brockhaus, Feb 20 2011
    
  • Mathematica
    jj = 2^36*3^23*5^15*7^13*11^10*13^9*17^8*19^8*23^8*29^7*31^7*37^7*41^6 *43^6*47^6*53^6*59^6*61^6*67^6*71^5*73^5*79^5*83^5*89^5*97^5; rr = {}; n = 2; While[n < 3222617400, If[GCD[jj, n^2 - 1] == n^2 - 1, k = FactorInteger[n^2 - 1]; kk = Last[k][[1]]; If[kk == 31, AppendTo[rr, n]]]; n++ ]; rr (* Artur Jasinski *)
    Select[Range[5000],Max[Transpose[FactorInteger[ #^2-1]][[1]]]==31&] (* Harvey P. Dale, Nov 03 2010 *)
  • PARI
    is(n)=n=n^2-1; forprime(p=2, 29, n/=p^valuation(n, p)); n>1 && 31^valuation(n, 31)==n \\ Charles R Greathouse IV, Jul 01 2013

A175902 Values of k in A175901.

Original entry on oeis.org

5, 5, 11, 4, 11, 29, 11, 25, 13, 23, 29, 34, 13, 89, 13, 51, 11, 151, 43, 89, 181, 169, 89, 29, 101, 59, 223, 111, 181, 269, 125, 29, 23, 101, 83, 35, 56, 305, 79, 113, 181, 287, 151, 155, 379, 349, 769, 545, 329, 505, 571, 37, 373, 769, 344, 91, 1121, 79, 353, 79, 985
Offset: 1

Views

Author

Artur Jasinski, Oct 11 2010, Oct 21 2010

Keywords

Crossrefs

Programs

  • PARI
    isok(n) = {pfs = factor(n^2-1)[,1]; for (k = 2, n-1, if (factor(k^2-1)[,1] == pfs, return (k));); return (0);}
    lista(nn) = {for(n=2, nn, if (k = isok(n), print1(k, ", ");););} \\ Michel Marcus, Nov 04 2013

Extensions

Edited by N. J. A. Sloane, Oct 14 2010

A175903 Numbers n such that there is another number k such that n^2-1 and k^2-1 have the same set of prime factors.

Original entry on oeis.org

4, 5, 7, 11, 13, 17, 19, 23, 25, 26, 29, 31, 34, 35, 37, 41, 43, 49, 51, 53, 55, 56, 59, 61, 65, 67, 71, 76, 79, 81, 83, 89, 91, 92, 97, 101, 109, 111, 113, 125, 127, 129, 131, 139, 149, 151, 155, 161, 169, 179, 181, 187, 191, 197, 199, 209, 223, 235, 239, 241, 251
Offset: 1

Views

Author

Artur Jasinski, Oct 12 2010, Oct 21 2010

Keywords

Comments

The difference from A175901 is that k may also be larger than n. So we obtain the sequence by building the union of the sets A175901 and A175902, and sorting.

Examples

			a(2)=5 because set of prime divisors of 5^2-1 =2^3*3 is {2,3}, the same as for example for 7^2-1 = 2^4*3.
		

Crossrefs

Programs

  • Mathematica
    aa = {}; bb = {}; cc = {}; ff = {}; Do[k = n^2 - 1; kk = FactorInteger[k]; b = {}; Do[AppendTo[b, kk[[m]][[1]]], {m, 1, Length[kk]}]; dd = Position[aa, b]; If[dd == {}, AppendTo[cc, n]; AppendTo[aa, b], AppendTo[ff, n]; AppendTo[bb, cc[[dd[[1]][[1]]]]]], {n, 2, 1000000}]; Take[Union[bb,ff],100] (* Artur Jasinski *)

Extensions

Name improved by T. D. Noe, Nov 15 2010
Previous Showing 21-28 of 28 results.