cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 101-110 of 129 results. Next

A324326 Number of crossing multiset partitions of a multiset whose multiplicities are the prime indices of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 10, 0, 0, 0, 10, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 31, 0, 0, 0, 0, 0, 36, 0, 14, 0, 0, 0, 25, 0, 0, 0, 71, 0, 0, 0, 0, 0, 0, 0, 103, 0, 0, 0, 0, 0, 0, 0, 75
Offset: 1

Views

Author

Gus Wiseman, Feb 22 2019

Keywords

Comments

This multiset (row n of A305936) is generally not the same as the multiset of prime indices of n. For example, the prime indices of 12 are {1,1,2}, while a multiset whose multiplicities are {1,1,2} is {1,1,2,3}.
A multiset partition is crossing if it contains two blocks of the form {{...x...y...},{...z...t...}} with x < z < y < t or z < x < t < y.

Examples

			The a(36) = 10 crossing multiset partitions of {1,1,2,2,3,4}:
  {{1,3},{1,2,2,4}}
  {{2,4},{1,1,2,3}}
  {{1,1,3},{2,2,4}}
  {{1,2,3},{1,2,4}}
  {{1},{1,3},{2,2,4}}
  {{1},{2,4},{1,2,3}}
  {{2},{1,3},{1,2,4}}
  {{2},{1,1,3},{2,4}}
  {{1,2},{1,3},{2,4}}
  {{1},{2},{1,3},{2,4}}
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    croXQ[stn_]:=MatchQ[stn,{_,{_,x_,_,y_,_},_,{_,z_,_,t_,_},_}/;x
    				

Formula

a(n) + A324325(n) = A318284(n).

A325416 Least k such that the omega-sequence of k sums to n, and 0 if none exists.

Original entry on oeis.org

1, 2, 0, 4, 8, 6, 32, 30, 12, 24, 48, 96, 60, 120, 240, 480, 960, 1920, 3840, 2520, 5040, 10080, 20160, 40320, 80640
Offset: 0

Views

Author

Gus Wiseman, Apr 25 2019

Keywords

Comments

We define the omega-sequence of n (row n of A323023) to have length A323014(n) = adjusted frequency depth of n, and the k-th term is Omega(red^{k-1}(n)), where Omega = A001222 and red^{k} is the k-th functional iteration of red = A181819, defined by red(n = p^i*...*q^j) = prime(i)*...*prime(j) = product of primes indexed by the prime exponents of n. For example, we have 180 -> 18 -> 6 -> 4 -> 3, so the omega-sequence of 180 is (5,3,2,2,1) with sum 13.

Examples

			The sequence of terms together with their omega-sequences (n = 2 term not shown) begins:
     1:
     2:  1
     4:  2 1
     8:  3 1
     6:  2 2 1
    32:  5 1
    30:  3 3 1
    12:  3 2 2 1
    24:  4 2 2 1
    48:  5 2 2 1
    96:  6 2 2 1
    60:  4 3 2 2 1
   120:  5 3 2 2 1
   240:  6 3 2 2 1
   480:  7 3 2 2 1
   960:  8 3 2 2 1
  1920:  9 3 2 2 1
  3840: 10 3 2 2 1
  2520:  7 4 3 2 2 1
  5040:  8 4 3 2 2 1
		

Crossrefs

Omega-sequence statistics: A001222 (first omega), A001221 (second omega), A071625 (third omega), A323022 (fourth omega), A304465 (second-to-last omega), A182850 or A323014 (frequency depth), A325248 (Heinz number), A325249 (sum).

Programs

  • Mathematica
    omseq[n_Integer]:=If[n<=1,{},Total/@NestWhileList[Sort[Length/@Split[#]]&,Sort[Last/@FactorInteger[n]],Total[#]>1&]];
    da=Table[Total[omseq[n]],{n,10000}];
    Table[If[!MemberQ[da,k],0,Position[da,k][[1,1]]],{k,0,Max@@da}]

A328830 The second prime shadow of n: a(1) = 1; for n > 1, a(n) = a(A003557(n)) * prime(A056169(n)) when A056169(n) > 0, otherwise a(n) = a(A003557(n)).

Original entry on oeis.org

1, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 4, 2, 3, 3, 2, 2, 4, 2, 4, 3, 3, 2, 4, 2, 3, 2, 4, 2, 5, 2, 2, 3, 3, 3, 3, 2, 3, 3, 4, 2, 5, 2, 4, 4, 3, 2, 4, 2, 4, 3, 4, 2, 4, 3, 4, 3, 3, 2, 6, 2, 3, 4, 2, 3, 5, 2, 4, 3, 5, 2, 4, 2, 3, 4, 4, 3, 5, 2, 4, 2, 3, 2, 6, 3, 3, 3, 4, 2, 6, 3, 4, 3, 3, 3, 4, 2, 4, 4, 3, 2, 5, 2, 4, 5
Offset: 1

Views

Author

Antti Karttunen, Oct 29 2019

Keywords

Comments

a(n) depends only on prime signature of n (cf. A025487).

Examples

			For n = 30 = 2 * 3 * 5, there are three unitary prime factors, while A003557(30) = 1, which terminates the recursion, thus a(30) = prime(3) = 5.
For n = 60060 = 2^2 * 3 * 5 * 7 * 11 * 13, there are 5 unitary prime factors, while in A003557(60060) = 2 there is only one, thus a(60060) = prime(5) * prime(1) = 11 * 2 = 22.
The number 1260 = 2^2*3^2*5*7 has prime exponents (2,2,1,1) so its prime shadow is prime(2)*prime(2)*prime(1)*prime(1) = 36.  Next, 36 = 2^2*3^2 has prime exponents (2,2) so its prime shadow is prime(2)*prime(2) = 9. In fact, the term a(1260) = 9 is the first appearance of 9 in the sequence. - _Gus Wiseman_, Apr 28 2022
		

Crossrefs

Column 2 of A353510.
Differs from A182860 for the first time at a(30) = 5, while A182860(30) = 4.
Cf. A182863 for the first appearances.
A005361 gives product of prime exponents.
A112798 gives prime indices, sum A056239.
A124010 gives prime signature, sorted A118914.
A181819 gives prime shadow, with an inverse A181821.
A325131 lists numbers relatively prime to their prime shadow.
A325755 lists numbers divisible by their prime shadow.

Programs

Formula

a(1) = 1; for n > 1, a(n) = A008578(1+A056169(n)) * a(A003557(n)).
A001221(a(n)) = A323022(n).
A001222(a(n)) = A071625(n).
a(n) = A181819(A181819(n)). - Gus Wiseman, Apr 27 2022

Extensions

Added Gus Wiseman's new name to the front of the definition. - Antti Karttunen, Apr 27 2022

A329601 The squarefree kernel of Product prime(e(i)), when n = Product prime(i)^e(i).

Original entry on oeis.org

1, 2, 2, 3, 2, 2, 2, 5, 3, 2, 2, 6, 2, 2, 2, 7, 2, 6, 2, 6, 2, 2, 2, 10, 3, 2, 5, 6, 2, 2, 2, 11, 2, 2, 2, 3, 2, 2, 2, 10, 2, 2, 2, 6, 6, 2, 2, 14, 3, 6, 2, 6, 2, 10, 2, 10, 2, 2, 2, 6, 2, 2, 6, 13, 2, 2, 2, 6, 2, 2, 2, 15, 2, 2, 6, 6, 2, 2, 2, 14, 7, 2, 2, 6, 2, 2, 2, 10, 2, 6, 2, 6, 2, 2, 2, 22, 2, 6
Offset: 1

Views

Author

Antti Karttunen, Nov 19 2019

Keywords

Crossrefs

Programs

Formula

a(n) = A007947(A181819(n)).
a(n) = A181819(A328400(n)), A181821(a(n)) = A328400(n).
a(A108951(n)) = A329607(n).
a(n) = A019565(A297404(n)). - Peter Munn, Oct 02 2023

A329607 a(n) = A007947(A122111(n)).

Original entry on oeis.org

1, 2, 2, 3, 2, 6, 2, 5, 3, 6, 2, 10, 2, 6, 6, 7, 2, 15, 2, 10, 6, 6, 2, 14, 3, 6, 5, 10, 2, 30, 2, 11, 6, 6, 6, 21, 2, 6, 6, 14, 2, 30, 2, 10, 10, 6, 2, 22, 3, 15, 6, 10, 2, 35, 6, 14, 6, 6, 2, 42, 2, 6, 10, 13, 6, 30, 2, 10, 6, 30, 2, 33, 2, 6, 15, 10, 6, 30, 2, 22, 7, 6, 2, 42, 6, 6, 6, 14, 2, 70, 6, 10, 6, 6, 6, 26, 2, 15, 10, 21, 2, 30, 2, 14, 30
Offset: 1

Views

Author

Antti Karttunen, Nov 17 2019

Keywords

Crossrefs

Programs

  • Mathematica
    Block[{f}, f[1] = 1; f[n_] := Module[{l = #, m = 0}, Times @@ Power @@@ Table[l -= m; l = DeleteCases[l, 0]; {Prime@ Length@ l, m = Min@ l}, Length@ Union@ l]] &@ Catenate[ConstantArray[PrimePi[#1], #2] & @@@ FactorInteger@ n]; Array[If[# < 1, 0, Sum[EulerPhi[d] Abs@ MoebiusMu[d], {d, Divisors[#]}]] &@ f[#] &, 105]] (* Michael De Vlieger, Nov 18 2019, after JungHwan Min at A122111. *)
  • PARI
    A007947(n) = factorback(factorint(n)[, 1]);
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A122111(n) = if(1==n,n,prime(bigomega(n))*A122111(A064989(n)));
    A329607(n) = A007947(A122111(n));

Formula

a(n) = A122111(A071364(n)).
A181821(a(n)) = A329600(n).

A352519 Numbers of the form prime(p)^q where p and q are primes. Prime powers whose prime index and exponent are both prime.

Original entry on oeis.org

9, 25, 27, 121, 125, 243, 289, 961, 1331, 1681, 2187, 3125, 3481, 4489, 4913, 6889, 11881, 16129, 24649, 29791, 32041, 36481, 44521, 58081, 68921, 76729, 78125, 80089, 109561, 124609, 134689, 160801, 161051, 177147, 185761, 205379, 212521, 259081, 299209
Offset: 1

Views

Author

Gus Wiseman, Mar 26 2022

Keywords

Comments

Alternatively, numbers of the form prime(prime(i))^prime(j) for some positive integers i, j.

Examples

			The terms together with their prime indices begin:
      9: {2,2}
     25: {3,3}
     27: {2,2,2}
    121: {5,5}
    125: {3,3,3}
    243: {2,2,2,2,2}
    289: {7,7}
    961: {11,11}
   1331: {5,5,5}
   1681: {13,13}
   2187: {2,2,2,2,2,2,2}
   3125: {3,3,3,3,3}
   3481: {17,17}
   4489: {19,19}
   4913: {7,7,7}
   6889: {23,23}
  11881: {29,29}
  16129: {31,31}
  24649: {37,37}
  29791: {11,11,11}
		

Crossrefs

Numbers of the form p^q for p and q prime are A053810, counted by A001221.
These partitions are counted by A230595.
This is the prime power case of A346068.
For numbers that are not a prime power we have A352518, counted by A352493.
A000040 lists the primes.
A000961 lists prime powers.
A001597 lists perfect powers.
A001694 lists powerful numbers, counted by A007690.
A056166 = prime exponents are all prime, counted by A055923.
A076610 = prime indices are all prime, counted by A000607, powerful A339218.
A109297 = same indices as exponents, counted by A114640.
A112798 lists prime indices, reverse A296150, sum A056239.
A124010 gives prime signature, sorted A118914, sum A001222.
A164336 lists all possible power-towers of prime numbers.
A257994 counts prime indices that are themselves prime, nonprime A330944.
A325131 = disjoint indices from exponents, counted by A114639.

Programs

  • Maple
    N:= 10^7: # for terms <= N
    M:=numtheory:-pi(numtheory:-pi(isqrt(N))):
    PP:= {seq(ithprime(ithprime(i)),i=1..M)}:
    R:= NULL:
    for p in PP do
      q:= 1:
      do
        q:= nextprime(q);
        t:= p^q;
        if t > N then break fi;
        R:= R, t;
      od;
    od:
    sort([R]); # Robert Israel, Dec 08 2022
  • Mathematica
    Select[Range[10000],PrimePowerQ[#]&&MatchQ[FactorInteger[#],{{?(PrimeQ[PrimePi[#]]&),k?PrimeQ}}]&]
  • Python
    from sympy import primepi, integer_nthroot, primerange
    def A352519(n):
        def f(x): return int(n+x-sum(primepi(primepi(integer_nthroot(x,p)[0])) for p in primerange(x.bit_length())))
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        return bisection(f,n,n) # Chai Wah Wu, Sep 12 2024

A353396 Number of integer partitions of n whose Heinz number has prime shadow equal to the product of prime shadows of its parts.

Original entry on oeis.org

1, 0, 1, 1, 0, 2, 0, 3, 1, 3, 4, 3, 7, 5, 9, 8, 12, 15, 15, 20, 21, 25, 31, 33, 38, 42, 46, 56, 61, 67, 78, 76, 96, 100, 114, 131, 130, 157, 157, 185, 200, 214, 236, 253, 275, 302, 333, 351, 386, 408, 440, 486, 515, 564, 596, 633, 691, 734, 800, 854, 899, 964
Offset: 0

Views

Author

Gus Wiseman, May 15 2022

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
We define the prime shadow A181819(n) to be the product of primes indexed by the exponents in the prime factorization of n. For example, 90 = prime(1)*prime(2)^2*prime(3) has prime shadow prime(1)*prime(2)*prime(1) = 12.

Examples

			The a(8) = 1 through a(14) = 9 partitions (A..D = 10..13):
  (53)  (72)    (73)    (B)     (75)     (D)      (B3)
        (621)   (532)   (A1)    (651)    (B2)     (752)
        (4221)  (631)   (4331)  (732)    (A21)    (761)
                (4411)          (6321)   (43321)  (A31)
                                (6411)   (44311)  (C11)
                                (43221)           (6521)
                                (44211)           (9221)
                                                  (54221)
                                                  (64211)
		

Crossrefs

The LHS (prime shadow) is A181819, with an inverse A181821.
The RHS (product of prime shadows) is A353394, first appearances A353397.
These partitions are ranked by A353395.
A related comparison is A353398, ranked by A353399.
A001222 counts prime factors with multiplicity, distinct A001221.
A003963 gives product of prime indices.
A056239 adds up prime indices, row sums of A112798 and A296150.
A124010 gives prime signature, sorted A118914, product A005361.
A239455 counts Look-and-Say partitions, ranked by A351294.
A324850 lists numbers divisible by the product of their prime indices.

Programs

  • Mathematica
    red[n_]:=If[n==1,1,Times@@Prime/@Last/@FactorInteger[n]];
    Table[Length[Select[IntegerPartitions[n],Times@@red/@#==red[Times@@Prime/@#]&]],{n,0,15}]

A367858 Irregular triangle read by rows where row n is the multiset multiplicity cokernel (MMC) of the multiset of prime indices of n.

Original entry on oeis.org

1, 2, 1, 3, 2, 2, 4, 1, 2, 3, 3, 5, 1, 2, 6, 4, 4, 3, 3, 1, 7, 1, 2, 8, 1, 3, 4, 4, 5, 5, 9, 1, 2, 3, 6, 6, 2, 1, 4, 10, 3, 3, 3, 11, 1, 5, 5, 7, 7, 4, 4, 2, 2, 12, 8, 8, 6, 6, 1, 3, 13, 4, 4, 4, 14, 1, 5, 2, 3, 9, 9, 15, 1, 2, 4, 1, 3, 7, 7, 1, 6, 16, 1, 2
Offset: 1

Views

Author

Gus Wiseman, Dec 03 2023

Keywords

Comments

Row n = 1 is empty.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
We define the multiset multiplicity cokernel MMC(m) of a multiset m by the following property, holding for all distinct multiplicities k >= 1. If S is the set of elements of multiplicity k in m, then max(S) has multiplicity |S| in MMC(m). For example, MMC({1,1,2,2,3,4,5}) = {2,2,5,5,5}, and MMC({1,2,3,4,5,5,5,5}) = {4,4,4,4,5}.

Examples

			The first 45 rows:
     1: {}       16: {1}        31: {11}
     2: {1}      17: {7}        32: {1}
     3: {2}      18: {1,2}      33: {5,5}
     4: {1}      19: {8}        34: {7,7}
     5: {3}      20: {1,3}      35: {4,4}
     6: {2,2}    21: {4,4}      36: {2,2}
     7: {4}      22: {5,5}      37: {12}
     8: {1}      23: {9}        38: {8,8}
     9: {2}      24: {1,2}      39: {6,6}
    10: {3,3}    25: {3}        40: {1,3}
    11: {5}      26: {6,6}      41: {13}
    12: {1,2}    27: {2}        42: {4,4,4}
    13: {6}      28: {1,4}      43: {14}
    14: {4,4}    29: {10}       44: {1,5}
    15: {3,3}    30: {3,3,3}    45: {2,3}
		

Crossrefs

Indices of empty and singleton rows are A000961.
Row lengths are A001221.
Depends only on rootless base A052410, see A007916.
Row maxima are A061395.
Rows have A071625 distinct elements.
Indices of constant rows are A072774.
Indices of strict rows are A130091.
Row minima are A367587.
Rows have Heinz numbers A367859.
Row sums are A367860.
Sorted row indices of first appearances are A367861, for kernel A367585.
A007947 gives squarefree kernel.
A112798 lists prime indices, length A001222, sum A056239, reverse A296150.
A124010 lists prime multiplicities (prime signature), sorted A118914.
A181819 gives prime shadow, with an inverse A181821.
A238747 gives prime metasignature, reversed A353742.
A304038 lists distinct prime indices, length A001221, sum A066328.

Programs

  • Mathematica
    mmc[q_]:=With[{mts=Length/@Split[q]}, Sort[Table[Max@@Select[q,Count[q,#]==i&], {i,mts}]]];
    Table[mmc[PrimePi /@ Join@@ConstantArray@@@If[n==1, {},FactorInteger[n]]], {n,100}]

Formula

For all positive integers n and k, row n^k is the same as row n.

A382774 Number of ways to permute the prime indices of n! so that the run-lengths are all different.

Original entry on oeis.org

1, 1, 1, 0, 2, 0, 6, 0, 0, 0, 96, 0
Offset: 0

Views

Author

Gus Wiseman, Apr 09 2025

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, sum A056239.

Examples

			The prime indices of 24 are {1,1,1,2}, with permutations (1,1,1,2) and (2,1,1,1), so a(4) = 2.
		

Crossrefs

For anti-run permutations we have A335407, see also A335125, A382858.
This is the restriction of A382771 to the factorials A000142, equal A382857.
A022559 counts prime indices of n!, sum A081401.
A044813 lists numbers whose binary expansion has distinct run-lengths, equal A140690.
A056239 adds up prime indices, row sums of A112798.
A098859 counts partitions with distinct multiplicities, ordered A242882.
A239455 counts Look-and-Say partitions, ranks A351294, conjugate A381432.
A328592 lists numbers whose binary form has distinct runs of ones, equal A164707.
A329738 counts compositions with equal run-lengths, ranks A353744.
A329739 counts compositions with distinct run-lengths, ranks A351596.
A351293 counts non-Look-and-Say partitions, ranks A351295, conjugate A381433.

Programs

  • Mathematica
    Table[Length[Select[Permutations[prix[n!]],UnsameQ@@Length/@Split[#]&]],{n,0,6}]

Formula

a(n) = A382771(n!).

A212638 a(n) = n-th powerful number that is the first integer of its prime signature, divided by its largest squarefree divisor: A003557(A181800(n)).

Original entry on oeis.org

1, 2, 4, 8, 16, 6, 32, 12, 64, 24, 36, 128, 48, 72, 256, 96, 144, 30, 512, 192, 216, 288, 60, 1024, 384, 432, 576, 120, 2048, 768, 864, 180, 1152, 240, 1296, 4096, 1536, 1728, 360, 2304, 480, 2592, 8192, 3072, 3456, 720, 900, 4608, 960, 5184, 1080, 16384
Offset: 1

Views

Author

Matthew Vandermast, Jun 05 2012

Keywords

Comments

The number of second signatures represented by the divisors of A181800(n) equals the number of prime signatures represented among the divisors of a(n). Cf. A212172, A212644.
A permutation of A025487.

Examples

			6 (whose prime factorization is 2*3) is the largest squarefree divisor of 144 (whose prime factorization is 2^4*3^2). Since 144 = A181800(10), and 144/6 = 24, a(10) = 24.
		

Crossrefs

Formula

a(n) = A003557(A181800(n)).
Previous Showing 101-110 of 129 results. Next