A318284
Number of multiset partitions of a multiset whose multiplicities are the prime indices of n.
Original entry on oeis.org
1, 1, 2, 2, 3, 4, 5, 5, 9, 7, 7, 11, 11, 12, 16, 15, 15, 26, 22, 21, 29, 19, 30, 36, 31, 30, 66, 38, 42, 52, 56, 52, 47, 45, 57, 92, 77, 67, 77, 74, 101, 98, 135, 64, 137, 97, 176, 135, 109, 109, 118, 105, 231, 249, 97, 141, 181, 139, 297, 198, 385, 195, 269
Offset: 1
The a(12) = 11 multiset partitions of {1,1,2,3}:
{{1,1,2,3}}
{{1},{1,2,3}}
{{2},{1,1,3}}
{{3},{1,1,2}}
{{1,1},{2,3}}
{{1,2},{1,3}}
{{1},{1},{2,3}}
{{1},{2},{1,3}}
{{1},{3},{1,2}}
{{2},{3},{1,1}}
{{1},{1},{2},{3}}
-
nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]];
facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
Table[Length[facs[Times@@Prime/@nrmptn[n]]],{n,60}]
-
permcount(v) = {my(m=1,s=0,k=0,t); for(i=1,#v,t=v[i]; k=if(i>1&&t==v[i-1],k+1,1); m*=t*k;s+=t); s!/m}
sig(n)={my(f=factor(n)); concat(vector(#f~, i, vector(f[i,2], j, primepi(f[i,1]))))}
count(sig)={my(n=vecsum(sig), A=O(x*x^vecmax(sig)), s=0); forpart(p=n, my(q=1/prod(i=1, #p, 1 - x^p[i] + A)); s+=prod(i=1, #sig, polcoef(q,sig[i]))*permcount(p)); s/n!}
a(n)={if(n==1, 1, my(s=sig(n)); if(#s==1, numbpart(s[1]), count(sig(n))))} \\ Andrew Howroyd, Dec 10 2018
A305936
Irregular triangle whose n-th row is the multiset spanning an initial interval of positive integers with multiplicities equal to the n-th row of A296150 (the prime indices of n in weakly decreasing order).
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 3, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 2, 3, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 2, 2, 1
Offset: 1
Row 90 is {1,1,1,2,2,3,3,4} because 90 = prime(3)*prime(2)*prime(2)*prime(1).
Triangle begins:
1:
2: 1
3: 1 1
4: 1 2
5: 1 1 1
6: 1 1 2
7: 1 1 1 1
8: 1 2 3
9: 1 1 2 2
10: 1 1 1 2
11: 1 1 1 1 1
12: 1 1 2 3
13: 1 1 1 1 1 1
Row lengths are
A056239. Number of distinct elements in row n is
A001222(n). Number of distinct multiplicities in row n is
A001221(n).
-
nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]];
Array[nrmptn,30]
A325277
Irregular triangle read by rows where row 1 is {1} and row n is the sequence starting with n and repeatedly applying A181819 until a prime number is reached.
Original entry on oeis.org
1, 2, 3, 4, 3, 5, 6, 4, 3, 7, 8, 5, 9, 3, 10, 4, 3, 11, 12, 6, 4, 3, 13, 14, 4, 3, 15, 4, 3, 16, 7, 17, 18, 6, 4, 3, 19, 20, 6, 4, 3, 21, 4, 3, 22, 4, 3, 23, 24, 10, 4, 3, 25, 3, 26, 4, 3, 27, 5, 28, 6, 4, 3, 29, 30, 8, 5, 31, 32, 11, 33, 4, 3
Offset: 1
Triangle begins:
1 26 4 3 51 4 3 76 6 4 3
2 27 5 52 6 4 3 77 4 3
3 28 6 4 3 53 78 8 5
4 3 29 54 10 4 3 79
5 30 8 5 55 4 3 80 14 4 3
6 4 3 31 56 10 4 3 81 7
7 32 11 57 4 3 82 4 3
8 5 33 4 3 58 4 3 83
9 3 34 4 3 59 84 12 6 4 3
10 4 3 35 4 3 60 12 6 4 3 85 4 3
11 36 9 3 61 86 4 3
12 6 4 3 37 62 4 3 87 4 3
13 38 4 3 63 6 4 3 88 10 4 3
14 4 3 39 4 3 64 13 89
15 4 3 40 10 4 3 65 4 3 90 12 6 4 3
16 7 41 66 8 5 91 4 3
17 42 8 5 67 92 6 4 3
18 6 4 3 43 68 6 4 3 93 4 3
19 44 6 4 3 69 4 3 94 4 3
20 6 4 3 45 6 4 3 70 8 5 95 4 3
21 4 3 46 4 3 71 96 22 4 3
22 4 3 47 72 15 4 3 97
23 48 14 4 3 73 98 6 4 3
24 10 4 3 49 3 74 4 3 99 6 4 3
25 3 50 6 4 3 75 6 4 3 100 9 3
Row lengths are 1 for n = 1 and
A323014(n) for n > 1.
Cf.
A001221,
A001222,
A071625,
A118914,
A181819,
A181821,
A182850,
A182857,
A323022,
A323023,
A325238,
A325239.
-
red[n_]:=Times@@Prime/@Last/@If[n==1,{},FactorInteger[n]];
Table[NestWhileList[red,n,#>1&&!PrimeQ[#]&],{n,30}]
A335126
A multiset whose multiplicities are the prime indices of n is inseparable.
Original entry on oeis.org
3, 5, 7, 10, 11, 13, 14, 17, 19, 21, 22, 23, 26, 28, 29, 31, 33, 34, 37, 38, 39, 41, 43, 44, 46, 47, 51, 52, 53, 55, 57, 58, 59, 61, 62, 65, 66, 67, 68, 69, 71, 73, 74, 76, 78, 79, 82, 83, 85, 86, 87, 88, 89, 91, 92, 93, 94, 95, 97, 101, 102, 103, 104, 106
Offset: 1
The sequence of terms together with the corresponding multisets begins:
3: {1,1}
5: {1,1,1}
7: {1,1,1,1}
10: {1,1,1,2}
11: {1,1,1,1,1}
13: {1,1,1,1,1,1}
14: {1,1,1,1,2}
17: {1,1,1,1,1,1,1}
19: {1,1,1,1,1,1,1,1}
21: {1,1,1,1,2,2}
22: {1,1,1,1,1,2}
23: {1,1,1,1,1,1,1,1,1}
26: {1,1,1,1,1,1,2}
28: {1,1,1,1,2,3}
29: {1,1,1,1,1,1,1,1,1,1}
Inseparable partitions are
A325535.
Separable factorizations are
A335434.
Inseparable factorizations are
A333487.
Separable partitions are ranked by
A335433.
Inseparable partitions are ranked by
A335448.
Anti-run permutations of prime indices are
A335452.
Patterns contiguously matched by compositions are
A335457.
Cf.
A025487,
A056239,
A106351,
A112798,
A114938,
A181819,
A181821,
A278990,
A292884,
A335407,
A335489,
A335516,
A335838.
-
nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]];
Select[Range[100],Select[Permutations[nrmptn[#]],!MatchQ[#,{_,x_,x_,_}]&]=={}&]
A318361
Number of strict set multipartitions (sets of sets) of a multiset whose multiplicities are the prime indices of n.
Original entry on oeis.org
1, 1, 0, 2, 0, 1, 0, 5, 1, 0, 0, 4, 0, 0, 0, 15, 0, 5, 0, 1, 0, 0, 0, 16, 0, 0, 8, 0, 0, 2, 0, 52, 0, 0, 0, 23, 0, 0, 0, 7, 0, 0, 0, 0, 5, 0, 0, 68, 0, 1, 0, 0, 0, 40, 0, 1, 0, 0, 0, 14, 0, 0, 1, 203, 0, 0, 0, 0, 0, 0, 0, 111, 0, 0, 4, 0, 0, 0, 0, 41, 80, 0, 0
Offset: 1
The a(24) = 16 sets of sets with multiset union {1,1,2,3,4}:
{{1},{1,2,3,4}}
{{1,2},{1,3,4}}
{{1,3},{1,2,4}}
{{1,4},{1,2,3}}
{{1},{2},{1,3,4}}
{{1},{3},{1,2,4}}
{{1},{4},{1,2,3}}
{{1},{1,2},{3,4}}
{{1},{1,3},{2,4}}
{{1},{1,4},{2,3}}
{{2},{1,3},{1,4}}
{{3},{1,2},{1,4}}
{{4},{1,2},{1,3}}
{{1},{2},{3},{1,4}}
{{1},{2},{4},{1,3}}
{{1},{3},{4},{1,2}}
-
nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]];
sqfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[sqfacs[n/d],Min@@#>d&]],{d,Select[Rest[Divisors[n]],SquareFreeQ]}]];
Table[Length[sqfacs[Times@@Prime/@nrmptn[n]]],{n,90}]
-
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
sig(n)={my(f=factor(n)); concat(vector(#f~, i, vector(f[i, 2], j, primepi(f[i, 1]))))}
count(sig)={my(r=0, A=O(x*x^vecmax(sig))); for(n=1, vecsum(sig)+1, my(s=0); forpart(p=n, my(q=prod(i=1, #p, 1 + x^p[i] + A)); s+=prod(i=1, #sig, polcoef(q, sig[i]))*(-1)^#p*permcount(p)); r+=(-1)^n*s/n!); r/2}
a(n)={if(n==1, 1, my(s=sig(n)); if(#s==1, s[1]==1, count(sig(n))))} \\ Andrew Howroyd, Dec 18 2018
A325238
First positive integer with each omega-sequence.
Original entry on oeis.org
1, 2, 4, 6, 8, 12, 16, 24, 30, 32, 36, 48, 60, 64, 96, 120, 128, 192, 210, 216, 240, 256, 360, 384, 420, 480, 512, 720, 768, 840, 900, 960, 1024, 1260, 1296, 1440, 1536, 1680, 1920, 2048, 2310, 2520, 2880, 3072, 3360, 3840, 4096, 4620, 5040, 5760, 6144, 6720
Offset: 1
The sequence of terms together with their omega-sequences begins:
1:
2: 1
4: 2 1
6: 2 2 1
8: 3 1
12: 3 2 2 1
16: 4 1
24: 4 2 2 1
30: 3 3 1
32: 5 1
36: 4 2 1
48: 5 2 2 1
60: 4 3 2 2 1
64: 6 1
96: 6 2 2 1
120: 5 3 2 2 1
128: 7 1
192: 7 2 2 1
210: 4 4 1
216: 6 2 1
240: 6 3 2 2 1
256: 8 1
360: 6 3 3 1
384: 8 2 2 1
420: 5 4 2 2 1
Cf.
A001221,
A001222,
A007916,
A011784,
A070175,
A071625,
A118914,
A181819,
A181821,
A303555,
A304465,
A323014,
A323023,
A325238,
A325239.
-
tomseq[n_]:=If[n<=1,{},Most[FixedPointList[Sort[Length/@Split[#]]&,Sort[Last/@FactorInteger[n]]]]];
omseqs=Table[Total/@tomseq[n],{n,1000}];
Sort[Table[Position[omseqs,x][[1,1]],{x,Union[omseqs]}]]
A304660
A run-length describing inverse to A181819. The multiplicity of prime(k) in a(n) is the k-th smallest prime index of n, which is A112798(n,k).
Original entry on oeis.org
1, 2, 4, 6, 8, 18, 16, 30, 36, 54, 32, 150, 64, 162, 108, 210, 128, 450, 256, 750, 324, 486, 512, 1470, 216, 1458, 900, 3750, 1024, 2250, 2048, 2310, 972, 4374, 648, 7350, 4096, 13122, 2916, 10290, 8192, 11250, 16384, 18750, 4500, 39366, 32768, 25410, 1296
Offset: 1
Sequence of normalized prime multisets together with the normalized prime multisets of their images begins:
1: {} -> {}
2: {1} -> {1}
3: {2} -> {1,1}
4: {1,1} -> {1,2}
5: {3} -> {1,1,1}
6: {1,2} -> {1,2,2}
7: {4} -> {1,1,1,1}
8: {1,1,1} -> {1,2,3}
9: {2,2} -> {1,1,2,2}
10: {1,3} -> {1,2,2,2}
11: {5} -> {1,1,1,1,1}
12: {1,1,2} -> {1,2,3,3}
13: {6} -> {1,1,1,1,1,1}
14: {1,4} -> {1,2,2,2,2}
15: {2,3} -> {1,1,2,2,2}
16: {1,1,1,1} -> {1,2,3,4}
17: {7} -> {1,1,1,1,1,1,1}
18: {1,2,2} -> {1,2,2,3,3}
Cf.
A055932,
A056239,
A112798,
A130091,
A133808,
A181819,
A181821,
A182850,
A182857,
A275870,
A304455.
-
Table[With[{y=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]},Times@@Power[Array[Prime,Length[y]],y]],{n,100}]
A332642
Numbers whose negated unsorted prime signature is not unimodal.
Original entry on oeis.org
90, 126, 198, 234, 270, 306, 342, 350, 378, 414, 522, 525, 540, 550, 558, 594, 630, 650, 666, 702, 738, 756, 774, 810, 825, 846, 850, 918, 950, 954, 975, 990, 1026, 1050, 1062, 1078, 1098, 1134, 1150, 1170, 1188, 1206, 1242, 1274, 1275, 1278, 1314, 1350, 1386
Offset: 1
The sequence of terms together with their prime indices begins:
90: {1,2,2,3}
126: {1,2,2,4}
198: {1,2,2,5}
234: {1,2,2,6}
270: {1,2,2,2,3}
306: {1,2,2,7}
342: {1,2,2,8}
350: {1,3,3,4}
378: {1,2,2,2,4}
414: {1,2,2,9}
522: {1,2,2,10}
525: {2,3,3,4}
540: {1,1,2,2,2,3}
550: {1,3,3,5}
558: {1,2,2,11}
594: {1,2,2,2,5}
630: {1,2,2,3,4}
650: {1,3,3,6}
666: {1,2,2,12}
702: {1,2,2,2,6}
For example, 630 has negated unsorted prime signature (-1,-2,-1,-1), which is not unimodal, so 630 is in the sequence.
These are the Heinz numbers of the partitions counted by
A332639.
The case that is not unimodal either is
A332643.
The version for compositions is
A332669.
Non-unimodal permutations are
A059204.
Non-unimodal compositions are
A115981.
Unsorted prime signature is
A124010.
Non-unimodal normal sequences are
A328509.
The number of non-unimodal negated permutations of a multiset whose multiplicities are the prime indices of n is
A332742(n).
Partitions whose negated 0-appended first differences are not unimodal are
A332744, with Heinz numbers
A332832.
Cf.
A007052,
A056239,
A112798,
A181821,
A242031,
A329747,
A332280,
A332281,
A332578,
A332671,
A332831.
-
unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]]
Select[Range[2000],!unimodQ[-Last/@FactorInteger[#]]&]
A382857
Number of ways to permute the prime indices of n so that the run-lengths are all equal.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 2, 1, 0, 1, 2, 1, 1, 1, 6, 1, 1, 2, 2, 2, 4, 1, 2, 2, 0, 1, 6, 1, 1, 1, 2, 1, 0, 1, 1, 2, 1, 1, 0, 2, 0, 2, 2, 1, 6, 1, 2, 1, 1, 2, 6, 1, 1, 2, 6, 1, 1, 1, 2, 1, 1, 2, 6, 1, 0, 1, 2, 1, 6, 2, 2
Offset: 0
The prime indices of 216 are {1,1,1,2,2,2} and we have permutations:
(1,1,1,2,2,2)
(1,2,1,2,1,2)
(2,1,2,1,2,1)
(2,2,2,1,1,1)
so a(216) = 4.
The prime indices of 25920 are {1,1,1,1,1,1,2,2,2,2,3} and we have permutations:
(1,2,1,2,1,2,1,2,1,3,1)
(1,2,1,2,1,2,1,3,1,2,1)
(1,2,1,2,1,3,1,2,1,2,1)
(1,2,1,3,1,2,1,2,1,2,1)
(1,3,1,2,1,2,1,2,1,2,1)
so a(25920) = 5.
For distinct instead of equal run-lengths we have
A382771.
For run-sums instead of run-lengths we have
A382877, distinct
A382876.
Positions of first appearances are
A382878.
Positions of terms > 1 are
A383089.
A003963 gives product of prime indices.
A005811 counts runs in binary expansion.
A044813 lists numbers whose binary expansion has distinct run-lengths.
A164707 lists numbers whose binary expansion has all equal run-lengths, distinct
A328592.
A353744 ranks compositions with equal run-lengths, counted by
A329738.
Cf.
A000720,
A000961,
A001221,
A001222,
A003242,
A008480,
A047966,
A238130,
A238279,
A351201,
A351293,
A351295.
-
Table[Length[Select[Permutations[Join@@ConstantArray@@@FactorInteger[n]], SameQ@@Length/@Split[#]&]],{n,0,100}]
A325268
Triangle read by rows where T(n,k) is the number of integer partitions of n with omicron k.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 3, 0, 1, 0, 1, 5, 0, 0, 1, 0, 1, 7, 2, 0, 0, 1, 0, 1, 12, 1, 0, 0, 0, 1, 0, 1, 17, 2, 1, 0, 0, 0, 1, 0, 1, 24, 4, 0, 0, 0, 0, 0, 1, 0, 1, 33, 5, 1, 1, 0, 0, 0, 0, 1, 0, 1, 44, 9, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 57, 14, 3, 0, 1
Offset: 0
Triangle begins:
1
0 1
0 1 1
0 1 1 1
0 1 3 0 1
0 1 5 0 0 1
0 1 7 2 0 0 1
0 1 12 1 0 0 0 1
0 1 17 2 1 0 0 0 1
0 1 24 4 0 0 0 0 0 1
0 1 33 5 1 1 0 0 0 0 1
0 1 44 9 1 0 0 0 0 0 0 1
0 1 57 14 3 0 1 0 0 0 0 0 1
0 1 76 20 3 0 0 0 0 0 0 0 0 1
Row n = 8 counts the following partitions.
(8) (44) (431) (2222) (11111111)
(53) (521)
(62)
(71)
(332)
(422)
(611)
(3221)
(3311)
(4211)
(5111)
(22211)
(32111)
(41111)
(221111)
(311111)
(2111111)
-
Table[Length[Select[IntegerPartitions[n],Switch[#,{},0,{},1,,NestWhile[Sort[Length/@Split[#]]&,#,Length[#]>1&]//First]==k&]],{n,0,10},{k,0,n}]
-
omicron(p)={if(!#p, 0, my(r=1); while(#p > 1, my(L=List(), k=0); r=#p; for(i=1, #p, if(i==#p||p[i]<>p[i+1], listput(L,i-k); k=i)); listsort(L); p=L); r)}
row(n)={my(v=vector(1+n)); forpart(p=n, v[1 + omicron(Vec(p))]++); v}
{ for(n=0, 10, print(row(n))) } \\ Andrew Howroyd, Jan 18 2023
Comments