cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A283077 Expansion of Product_{n>=1} (1 - x^(7*n))/(1 - x^n)^8 in powers of x.

Original entry on oeis.org

1, 8, 44, 192, 726, 2464, 7704, 22527, 62329, 164516, 416948, 1019690, 2416246, 5565864, 12498215, 27421815, 58903768, 124088548, 256749822, 522450250, 1046735092, 2066948472, 4026431543, 7743987036, 14715788745, 27648250012, 51390298666, 94550761844
Offset: 0

Views

Author

Seiichi Manyama, Feb 28 2017

Keywords

Examples

			G.f.: A(x) = 1 + 8*x + 44*x^2 + 192*x^3 + 726*x^4 + 2464*x^5 + ...
log(A(x)) = 8*x + 24*x^2/2 + 32*x^3/3 + 56*x^4/4 + 48*x^5/5 + 96*x^6/6 + 57*x^7/7 + 120*x^8/8 + ... + sigma(7*n)*x^n/n + ...
		

Crossrefs

Cf. A282942 (Product_{n>=1} (1 - x^n)^8/(1 - x^(7*n))), A283078 (sigma(7*n)).
Cf. exp( Sum_{n>=1} sigma(k*n)*x^n/n ): A182818 (k=2), A182819 (k=3), A182820 (k=4), A182821 (k=5), A283119 (k=6), this sequence (k=7), A283120 (k=8), A283121 (k=9).

Formula

G.f.: exp( Sum_{n>=1} sigma(7*n)*x^n/n ).
a(n) = (1/n)*Sum_{k=1..n} sigma(7*k)*a(n-k). - Seiichi Manyama, Mar 05 2017
a(n) ~ 3025 * exp(sqrt(110*n/21)*Pi) / (28224*sqrt(14)*n^(5/2)). - Vaclav Kotesovec, Mar 20 2017

A283224 Expansion of exp( Sum_{n>=1} sigma_2(2*n)*x^n/n ) in powers of x.

Original entry on oeis.org

1, 5, 23, 90, 317, 1036, 3192, 9358, 26336, 71542, 188440, 483007, 1208275, 2956941, 7093531, 16709523, 38706389, 88281394, 198474497, 440263342, 964424210, 2087882510, 4470194335, 9471079495, 19868723042, 41291454537, 85049747913, 173697766646
Offset: 0

Views

Author

Seiichi Manyama, Mar 03 2017

Keywords

Crossrefs

Cf. exp( Sum_{n>=1} sigma_k(2*n)*x^n/n ): A182818 (k=1), this sequence (k=2).
Cf. exp( Sum_{n>=1} sigma_2(m*n)*x^n/n ): A000219 (m=1), this sequence (m=2), A283238 (m=3).

Formula

a(n) = (1/n)*Sum_{k=1..n} sigma_2(2*k)*a(n-k). - Seiichi Manyama, Mar 04 2017

A203320 G.f.: exp( Sum_{n>=1} x^n/n * exp( Sum_{k>=1} sigma(n*k) * x^(n*k)/k ) ).

Original entry on oeis.org

1, 1, 2, 4, 9, 16, 35, 61, 124, 222, 427, 749, 1434, 2493, 4585, 8032, 14511, 25096, 44791, 77019, 135435, 232002, 402957, 685582, 1181399, 1998168, 3410288, 5741978, 9726821, 16286497, 27409625, 45672026, 76378731, 126706567, 210690588, 347954716, 575685559, 946756712
Offset: 0

Views

Author

Paul D. Hanna, Dec 31 2011

Keywords

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 4*x^3 + 9*x^4 + 16*x^5 + 35*x^6 + 61*x^7 +...
G.f.: A(x) = exp( Sum_{n>=1} P_n(x^n) * x^n/n )
where P_n(x) = exp( Sum_{k>=1} sigma(n*k)*x^k/k ), which begin:
P_1(x) = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 7*x^5 + 11*x^6 + 15*x^7 +...;
P_2(x) = 1 + 3*x + 8*x^2 + 19*x^3 + 41*x^4 + 83*x^5 + 161*x^6 +...;
P_3(x) = 1 + 4*x + 14*x^2 + 39*x^3 + 101*x^4 + 238*x^5 + 533*x^6 +...;
P_4(x) = 1 + 7*x + 32*x^2 + 119*x^3 + 385*x^4 + 1127*x^5 + 3057*x^6 +...;
P_5(x) = 1 + 6*x + 27*x^2 + 98*x^3 + 315*x^4 + 917*x^5 + 2486*x^6 +...;
P_6(x) = 1 + 12*x + 86*x^2 + 469*x^3 + 2141*x^4 + 8594*x^5 +...;
P_7(x) = 1 + 8*x + 44*x^2 + 192*x^3 + 726*x^4 + 2464*x^5 +...;
P_8(x) = 1 + 15*x + 128*x^2 + 815*x^3 + 4289*x^4 + 19663*x^5 +...;
...
Also, P_n(x^n) = Product_{k=0..n-1} P(u^k*x) where u = n-th root of unity:
P_1(x) = P(x), the partition function;
P_2(x^2) = P(x)*P(-x);
P_3(x^3) = P(x)*P(u*x)*P(u^2*x) where u = exp(2*Pi*I/3);
P_4(x^4) = P(x)*P(I*x)*P(I^2*x)*P(I^3*x) where I^2 = -1;
...
The logarithmic derivative of this sequence begins:
A203321 = [1,3,7,19,26,75,78,211,241,518,463,1447,1002,2558,...].
		

Crossrefs

Programs

  • PARI
    {a(n)=local(L=vector(n+1, i, 1)); L=Vec(deriv(sum(m=1, n, x^m/m*exp(sum(k=1, floor(n/m), sigma(m*k)*x^(m*k)/k)+x*O(x^n))))); polcoeff(exp(x*Ser(vector(n+1, m, L[m]/m))), n)}
    
  • PARI
    {a(n)=local(A=1+x+x*O(x^n),P=exp(sum(k=1,n,sigma(k)*x^k/k)+x*O(x^n))); A=exp(sum(m=1, n+1, x^m/m*round(prod(k=0, m-1, subst(P, x, exp(2*Pi*I*k/m)*x+x*O(x^n)))))); polcoeff(A, n)}

Formula

G.f.: exp( Sum_{n>=1} P_n(x^n) * x^n/n ) where P_n(x^n) = Product_{k=0..n-1} P(u^k*x), u is an n-th root of unity, and P(x) is the partition function (A000041); P(x) = exp(Sum_{n>=1} sigma(n)*x^n/n) where sigma(n) is the sum of divisors of n (A000203).
The logarithmic derivative yields A203321.

A282327 Expansion of exp( Sum_{n>=1} sigma_3(2*n)*x^n/n ) in powers of x.

Original entry on oeis.org

1, 9, 77, 534, 3320, 18933, 100770, 506697, 2428161, 11161765, 49469005, 212246744, 884491121, 3589900607, 14223638534, 55122970206, 209307080221, 779837798559, 2854660220661, 10278494869342, 36439277959593, 127311828611819, 438712861233581
Offset: 0

Views

Author

Seiichi Manyama, Mar 03 2017

Keywords

Crossrefs

Cf. exp( Sum_{n>=1} sigma_k(2*n)*x^n/n ): A182818 (k=1), A283224 (k=2), this sequence (k=3).
Cf. exp( Sum_{n>=1} sigma_3(m*n)*x^n/n ): A023871 (m=1), this sequence (m=2), A283244 (m=3).

Formula

a(n) = (1/n)*Sum_{k=1..n} sigma_3(2*k)*a(n-k). - Seiichi Manyama, Mar 04 2017

A319362 a(n) = [x^n] exp(Sum_{k>=1} sigma(n*k)*x^k/k).

Original entry on oeis.org

1, 1, 8, 39, 385, 917, 31247, 22527, 1081986, 2464860, 50099635, 14931071, 19684696065, 394805109, 82267017929, 496514888157, 11386442827781, 284625019799, 3469798073972537, 7725084195239, 136470024990370842, 28400489198168457, 241211623942678951, 5776331152550399
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 17 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Exp[Sum[DivisorSigma[1, n k] x^k/k, {k, 1, n}]], {x, 0, n}], {n, 0, 23}]

A322185 a(n) = sigma(2*n) * binomial(2*n,n)/2, for n >= 1.

Original entry on oeis.org

3, 21, 120, 525, 2268, 12936, 41184, 199485, 948090, 3879876, 12697776, 81124680, 218412600, 1123264800, 5584230720, 18934032285, 63007367940, 412918656150, 1060357914000, 6203093796900, 25836377973120, 88372156476240, 296403506193600, 1999351428352200, 5878093199355468, 24300008114457096, 116816365538886720, 458921436045626400, 1353026992479346800
Offset: 1

Views

Author

Paul D. Hanna, Dec 07 2018

Keywords

Comments

Related logarithmic series:
(1) log( Product_{n>=1} (1 - x^(2*n))/(1 - x^n)^3 ) = Sum_{n>=1} sigma(2*n) * x^n/n (see formula of Joerg Arndt in A182818).
(2) log( C(x) ) = Sum_{n>=1} binomial(2*n,n)/2 * x^n/n, where C(x) = 1 + x*C(x)^2 is the Catalan function (A000108).

Examples

			L.g.f: L(x) = 3*x + 21*x^2/2 + 120*x^3/3 + 525*x^4/4 + 2268*x^5/5 + 12936*x^6/6 + 41184*x^7/7 + 199485*x^8/8 + 948090*x^9/9 + 3879876*x^10/10 + 12697776*x^11/11 + ... + sigma(2*n) * binomial(2*n,n)/2 * x^n/n + ...
RELATED SERIES.
exp(L(x)) = 1 + 3*x + 15*x^2 + 76*x^3 + 357*x^4 + 1662*x^5 + 8203*x^6 + 36609*x^7 + 169800*x^8 + 788024*x^9 + 3586350*x^10 + 15948147*x^11 + ... + A322186(n)*x^n + ...
The table of coefficients of x^n*y^k/(n+k) in
log( Product_{n>=1} 1/(1 - (x + y)^n) ) = (1*x + 1*y)/1 + (3*x^2 + 6*x*y + 3*y^2)/2 + (4*x^3 + 12*x^2*y + 12*x*y^2 + 4*y^3)/3 + (7*x^4 + 28*x^3*y + 42*x^2*y^2 + 28*x*y^3 + 7*y^4)/4 + (6*x^5 + 30*x^4*y + 60*x^3*y^2 + 60*x^2*y^3 + 30*x*y^4 + 6*y^5)/5 + (12*x^6 + 72*x^5*y + 180*x^4*y^2 + 240*x^3*y^3 + 180*x^2*y^4 + 72*x*y^5 + 12*y^6)/6 + (8*x^7 + 56*x^6*y + 168*x^5*y^2 + 280*x^4*y^3 + 280*x^3*y^4 + 168*x^2*y^5 + 56*x*y^6 + 8*y^7)/7 + (15*x^8 + 120*x^7*y + 420*x^6*y^2 + 840*x^5*y^3 + 1050*x^4*y^4 + 840*x^3*y^5 + 420*x^2*y^6 + 120*x*y^7 + 15*y^8)/8 + ...
begins
n=0: [0, 1, 3, 4, 7, 6, 12, 8, 15, 13, 18, ..., sigma(k), ...];
n=1: [1, 6, 12, 28, 30, 72, 56, 120, 117, 180, ...];
n=2: [3, 12, 42, 60, 180, 168, 420, 468, 810, 660, ...];
n=3: [4, 28, 60, 240, 280, 840, 1092, 2160, 1980, 6160, ...];
n=4: [7, 30, 180, 280, 1050, 1638, 3780, 3960, 13860, 10010, ...];
n=5: [6, 72, 168, 840, 1638, 4536, 5544, 22176, 18018, 48048, ...];
n=6: [12, 56, 420, 1092, 3780, 5544, 25872, 24024, 72072, 120120, ...];
n=7: [8, 120, 468, 2160, 3960, 22176, 24024, 82368, 154440, 354640, ...];
n=8: [15, 117, 810, 1980, 13860, 18018, 72072, 154440, 398970, 437580, ...];
n=9: [13, 180, 660, 6160, 10010, 48048, 120120, 354640, 437580, 1896180, ...];
n=10: [18, 132, 1848, 4004, 24024, 72072, 248248, 350064, 1706562, 1847560, ...]; ...
in which the diagonal of coefficients of x^n*y^n/(2*n) equals
[0, 6, 42, 240, 1050, 4536, 25872, 82368, 398970, 1896180, ..., 2*a(n), ...],
which is twice this sequence.
		

Crossrefs

Programs

  • PARI
    {a(n) = sigma(2*n) * binomial(2*n,n)/2}
    for(n=1, 30, print1( a(n), ", ") )
    
  • PARI
    /* [x^n*y^n/n] log( Product_{n>=1} 1/(1 - (x + y)^n) ) */
    N=30
    {L = sum(n=1, 2*N+1, -log(1 - (x + y)^n +x*O(x^(2*N)) +y*O(y^(2*N))) ); }
    {a(n) = polcoeff( n*polcoeff( L, n, x), n, y)}
    for(n=1, N, print1( a(n), ", ") )

Formula

a(n) is the coefficient of x^n*y^n/n in log( Product_{n>=1} 1/(1 - (x + y)^n) ), for n >= 1.

A322186 G.f.: exp( Sum_{n>=1} A322185(n)*x^n/n ), where A322185(n) = sigma(2*n) * binomial(2*n,n)/2.

Original entry on oeis.org

1, 3, 15, 76, 357, 1662, 8203, 36609, 169800, 788024, 3586350, 15948147, 73761986, 324147729, 1454796651, 6544916640, 28902107643, 126842754933, 567156315794, 2468434955040, 10893525305088, 47854663427104, 208582052412240, 905923236202737, 3975385018556868, 17200981327476354, 74619131550054048, 323976744392754994, 1400917964875907424, 6031485491299656747
Offset: 0

Views

Author

Paul D. Hanna, Dec 07 2018

Keywords

Comments

Related series:
(1) Product_{n>=1} (1 - x^(2*n))/(1 - x^n)^3 = exp( Sum_{n>=1} sigma(2*n) * x^n/n ) (see formula of Joerg Arndt in A182818).
(2) C(x) = exp( Sum_{n>=1} binomial(2*n,n)/2 * x^n/n ), where C(x) = 1 + x*C(x)^2 is the Catalan function (A000108).
A322185(n) is also the coefficient of x^n*y^n/n in log( Product_{n>=1} 1/(1 - (x + y)^n) ).

Examples

			G.f.: A(x) = 1 + 3*x + 15*x^2 + 76*x^3 + 357*x^4 + 1662*x^5 + 8203*x^6 + 36609*x^7 + 169800*x^8 + 788024*x^9 + 3586350*x^10 + 15948147*x^11 + ...
such that
log(A(x)) = 3*x + 21*x^2/2 + 120*x^3/3 + 525*x^4/4 + 2268*x^5/5 + 12936*x^6/6 + 41184*x^7/7 + 199485*x^8/8 + 948090*x^9/9 + 3879876*x^10/10 + 12697776*x^11/11 + ... + A322185(n)*x^n/n + ...
RELATED SERIES.
A(x)^2 = 1 + 6*x + 39*x^2 + 242*x^3 + 1395*x^4 + 7746*x^5 + 42864*x^6 + 226560*x^7 + 1185417*x^8 + 6126642*x^9 + 31178598*x^10 + 156270312*x^11 + 780797727*x^12 + ...
where A(x)^2 = exp( Sum_{n>=1} sigma(2*n) * binomial(2*n,n) * x^n/n ).
		

Crossrefs

Programs

  • PARI
    {A322185(n) = sigma(2*n) * binomial(2*n,n)/2}
    {a(n) = polcoeff( exp( sum(m=1, n, A322185(m)*x^m/m ) +x*O(x^n) ), n) }
    for(n=0, 30, print1( a(n), ", ") )
Previous Showing 11-17 of 17 results.