cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A374537 a(n) is the sum of the squares of the divisors of n that are exponentially odd numbers.

Original entry on oeis.org

1, 5, 10, 5, 26, 50, 50, 69, 10, 130, 122, 50, 170, 250, 260, 69, 290, 50, 362, 130, 500, 610, 530, 690, 26, 850, 739, 250, 842, 1300, 962, 1093, 1220, 1450, 1300, 50, 1370, 1810, 1700, 1794, 1682, 2500, 1850, 610, 260, 2650, 2210, 690, 50, 130, 2900, 850, 2810
Offset: 1

Views

Author

Amiram Eldar, Jul 11 2024

Keywords

Comments

The number of divisors of n that are exponentially odd is A322483(n) and their sum is A033634(n).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := 1 + p^2 * (p^(4*Floor[(e-1)/2]+4) - 1) / (p^4 - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n), p = f[, 1], e = f[, 2]); prod(i = 1, #p, 1 + p[i]^2 * (p[i]^(4*((e[i]-1)\2)+4) - 1) / (p[i]^4 - 1));}

Formula

a(n) = A001157(n) if and only if n is squarefree (A005117).
Multiplicative with a(p^e) = 1 + p^2 * (p^(4*floor((e-1)/2)+4) - 1) / (p^4 - 1).
Dirichlet g.f.: zeta(s) * zeta(2*s-4) * Product_{p prime} (1 + 1/p^(s-2) - 1/p^(2*s-4)).
Sum_{k=1..n} a(k) = c * n^3 / 3, where c = zeta(2) * zeta(3) * Product_{p prime} (1 - 2/p^2 + 1/p^3) = A183699 * A065464 = 0.84677961058798544766... .

A374538 a(n) is the sum of the squares of the unitary divisors of n that are exponentially odd numbers (A268335).

Original entry on oeis.org

1, 5, 10, 1, 26, 50, 50, 65, 1, 130, 122, 10, 170, 250, 260, 1, 290, 5, 362, 26, 500, 610, 530, 650, 1, 850, 730, 50, 842, 1300, 962, 1025, 1220, 1450, 1300, 1, 1370, 1810, 1700, 1690, 1682, 2500, 1850, 122, 26, 2650, 2210, 10, 1, 5, 2900, 170, 2810, 3650, 3172
Offset: 1

Views

Author

Amiram Eldar, Jul 11 2024

Keywords

Comments

The number of unitary divisors of n that are exponentially odd is A055076(n) and their sum is A358346(n).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := 1 + If[OddQ[e], p^(2*e), 0]; a[n_] := Times @@ f @@@ FactorInteger[n]; a[1] = 1; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, 1 + if(f[i, 2]%2,  f[i, 1]^(2*f[i, 2]), 0));}

Formula

a(n) = A034676(A350389(n)).
a(n) >= 1 with equality if and only if n is a square (A000290).
a(n) <= A374537(n) with equality if and only if n is squarefree (A005117).
Multiplicative with a(p^e) = p^(2*e) + 1 if e is odd, and 1 otherwise.
Dirichlet g.f.: zeta(s) * zeta(2*s-4) * Product_{p prime} (1 + 1/p^(s-2) - 1/p^(2*s-4) - 1/p^(2*s-2)).
Sum_{k=1..n} a(k) ~ c * n^3 / 3, where c = zeta(2) * zeta(3) * Product_{p prime} (1 - 2/p^2 + 1/p^3 - 1/p^4 + 1/p^5) = 0.79482441214759383925... .

A375901 Decimal expansion of the triple integral of {x/y}{y/z}{z/x} over the unit cube.

Original entry on oeis.org

0, 9, 5, 8, 5, 0, 1, 7, 4, 9, 1, 3, 3, 7, 9, 5, 2, 5, 6, 7, 8, 5, 3, 6, 1, 9, 8, 5, 9, 6, 3, 3, 5, 3, 7, 0, 0, 9, 9, 4, 7, 9, 4, 8, 5, 2, 0, 4, 9, 2, 3, 5, 3, 9, 8, 1, 4, 3, 0, 1, 7, 0, 7, 4, 8, 1, 6, 1, 3, 5, 6, 9, 5, 5, 5, 3, 6, 6, 7, 1, 2, 5, 7, 5, 1, 7, 5
Offset: 0

Views

Author

Keywords

Examples

			0.095850174913379525678536198596335370099479485204923539814301707481613569555....
		

Crossrefs

Programs

  • Mathematica
    RealDigits[1 + (Zeta[3]/6 - 3/4) * Zeta[2], 10, 120, -1][[1]] (* Amiram Eldar, Sep 03 2024 *)
  • PARI
    1-.75*zeta(2)+zeta(2)*zeta(3)/6

Formula

Integral_{0..1} Integral_{0..1} Integral_{0..1} {x/y}*{y/z}*{z/x} dx dy dz, where {w} is the fractional part of w.
Vălean shows that this is equal to 1 - 3/4 * zeta(2) + 1/6 * zeta(2) * zeta(3).

A341637 a(n) = Sum_{d|n} phi(d) * sigma(d) * sigma(n/d).

Original entry on oeis.org

1, 6, 12, 30, 30, 72, 56, 138, 123, 180, 132, 360, 182, 336, 360, 602, 306, 738, 380, 900, 672, 792, 552, 1656, 795, 1092, 1176, 1680, 870, 2160, 992, 2538, 1584, 1836, 1680, 3690, 1406, 2280, 2184, 4140, 1722, 4032, 1892, 3960, 3690, 3312, 2256, 7224, 2835, 4770, 3672, 5460
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 16 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[EulerPhi[d] DivisorSigma[1, d] DivisorSigma[1, n/d], {d, Divisors[n]}], {n, 52}]
    Table[Sum[DivisorSigma[1, GCD[n, k]] DivisorSigma[1, n/GCD[n, k]], {k, n}], {n, 52}]
    f[p_, e_] := (p^(2*e + 3) - (e + 1)*(p^2 - 1)*p^e - p)/((p - 1)^2*(p + 1)); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50] (* Amiram Eldar, Nov 12 2022 *)
  • PARI
    a(n) = sumdiv(n, d, eulerphi(d)*sigma(d)*sigma(n/d)); \\ Michel Marcus, Feb 17 2021

Formula

a(n) = Sum_{k=1..n} sigma(gcd(n,k)) * sigma(n/gcd(n,k)).
From Amiram Eldar, Nov 12 2022: (Start)
Multiplicative with a(p^e) = (p^(2*e+3) - (e+1)*(p^2-1)*p^e - p)/((p-1)^2*(p+1)).
Sum_{k=1..n} a(k) ~ c * n^3, where c = (zeta(2)*zeta(3)/3) * Product_{p prime} (1 - 1/(p^2*(p+1))) = (1/3) * A183699 * A330523 = 0.581007... . (End)

A364490 Decimal expansion of zeta(3) * primezeta(2).

Original entry on oeis.org

5, 4, 3, 6, 2, 7, 1, 3, 3, 1, 9, 6, 4, 7, 9, 4, 2, 9, 7, 8, 0, 2, 5, 5, 7, 1, 3, 4, 7, 3, 2, 8, 3, 4, 2, 8, 0, 6, 9, 3, 6, 4, 8, 0, 4, 9, 5, 7, 6, 6, 1, 3, 9, 8, 7, 1, 9, 1, 6, 0, 6, 3, 6, 0, 0, 1, 8, 0, 8, 8, 8, 9, 2, 4, 3, 4, 6, 5, 7, 3, 5, 0, 4, 2, 2, 5, 1, 7, 4, 4, 0, 3, 3, 6, 5, 7, 4, 3, 8, 4, 8, 6, 0, 4, 7
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 26 2023

Keywords

Examples

			0.543627133196479429780255713473283428069364804957661398719160636...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Zeta[3] PrimeZetaP[2], 10, 105][[1]]
  • PARI
    zeta(3) * sumeulerrat(1/p, 2) \\ Amiram Eldar, Jul 28 2023

Formula

Equals Sum_{k>=1} sopf(k) / k^3, where sopf(k) is the sum of the distinct primes dividing k (A008472).

A383289 Decimal expansion of Integral_{x=0..1} Integral_{y=0..1} Integral_{z=0..1} ({x/y}*{y/z}*{z/x})^2 dx dy dz, where {w} is the fractional part of w.

Original entry on oeis.org

0, 2, 3, 4, 0, 9, 6, 1, 8, 2, 3, 1, 5, 8, 0, 8, 7, 2, 6, 8, 0, 2, 0, 0, 9, 3, 8, 5, 5, 0, 0, 6, 9, 8, 0, 6, 7, 5, 8, 4, 0, 4, 4, 2, 5, 8, 2, 7, 1, 4, 8, 3, 8, 5, 1, 5, 9, 3, 8, 7, 1, 0, 0, 9, 6, 3, 8, 8, 8, 3, 3, 5, 9, 5, 8, 3, 1, 8, 0, 5, 9, 4, 1, 0, 4, 1, 5, 6, 4, 9, 6, 6, 8, 0, 3, 9, 4, 0, 0, 5, 3, 8, 9, 4, 0, 0, 1
Offset: 0

Views

Author

Amiram Eldar, Jul 26 2025

Keywords

Examples

			0.02340961823158087268020093855006980675840442582714...
		

Crossrefs

Cf. A375901 (m=1), this constant (m=2), A386564 (m=3).

Programs

  • Mathematica
    RealDigits[1 - Zeta[2]/2 - Zeta[3]/2 + 7*Zeta[6]/48 + Zeta[2]*Zeta[3]/18 + Zeta[3]^2/18 + Zeta[3]*Zeta[4]/12, 10, 120, -1][[1]]
    RealDigits[With[{m = 2}, 1 - 3*Sum[Zeta[j + 1], {j, 1, m}]/(2*(m + 1)) + Sum[Zeta[j + 1], {j, 1, m}] * Sum[(j + 1)*Zeta[j + 2], {j, 1, m}]/((m + 1)^2*(m + 2))], 10, 106][[1]] (* Vaclav Kotesovec, Jul 26 2025, following the general formula found by the solvers *)
  • PARI
    1 - zeta(2)/2 - zeta(3)/2 + 7*zeta(6)/48 + zeta(2)*zeta(3)/18 + zeta(3)^2/18 + zeta(3)*zeta(4)/12

Formula

Equals 1 - zeta(2)/2 - zeta(3)/2 + 7*zeta(6)/48 + zeta(2)*zeta(3)/18 + zeta(3)^2/18 + zeta(3)*zeta(4)/12.
In general, Integral_{x=0..1} Integral_{y=0..1} Integral_{z=0..1} ({x/y}*{y/z}*{z/x})^m dx dy dz = 1 - 3*Sum_{j=1..m} zeta(j+1)/(2*(m+1)) + (Sum_{j=1..m} zeta(j+1))*(Sum_{j=1..m} (j+1)*zeta(j+2))/((m+1)^2*(m+2)).

A386564 Decimal expansion of Integral_{x=0..1} Integral_{y=0..1} Integral_{z=0..1} ({x/y}*{y/z}*{z/x})^3 dx dy dz, where {w} is the fractional part of w.

Original entry on oeis.org

0, 0, 7, 7, 8, 8, 9, 5, 5, 0, 8, 4, 0, 9, 6, 6, 5, 2, 0, 5, 4, 2, 8, 3, 6, 0, 9, 6, 5, 9, 9, 2, 7, 1, 4, 1, 1, 9, 0, 1, 7, 1, 9, 6, 4, 8, 9, 2, 6, 6, 3, 2, 0, 8, 4, 1, 9, 1, 0, 2, 4, 4, 6, 9, 5, 8, 0, 0, 5, 3, 5, 9, 8, 6, 8, 2, 9, 2, 3, 4, 1, 2, 0, 4, 2, 2, 4, 9, 6, 9, 2, 9, 8, 5, 4, 8, 5, 7, 6, 5, 9, 9, 1, 7, 6
Offset: 0

Views

Author

Amiram Eldar, Jul 26 2025

Keywords

Examples

			0.00778895508409665205428360965992714119017196489266...
		

Crossrefs

Cf. A375901 (m=1), A383289 (m=2), this constant (m=3).

Programs

  • Mathematica
    RealDigits[1 - 3*(Zeta[2]+Zeta[3]+Zeta[4])/8 + 21*Zeta[6]/320 + 7*Zeta[8]/160 + Zeta[3]^2/40 + Zeta[2]*Zeta[3]/40 + Zeta[2]*Zeta[5]/20 + Zeta[3]*Zeta[4]/16 + Zeta[3]*Zeta[5]/20 + Zeta[4]*Zeta[5]/20, 10, 120, -1][[1]]
  • PARI
    1 - 3*(zeta(2)+zeta(3)+zeta(4))/8 + 21*zeta(6)/320 + 7*zeta(8)/160 + zeta(3)^2/40 + zeta(2)*zeta(3)/40 + zeta(2)*zeta(5)/20 + zeta(3)*zeta(4)/16 + zeta(3)*zeta(5)/20 + zeta(4)*zeta(5)/20

Formula

Equal 1 - 3*(zeta(2)+zeta(3)+zeta(4))/8 + 21*zeta(6)/320 + 7*zeta(8)/160 + zeta(3)^2/40 + zeta(2)*zeta(3)/40 + zeta(2)*zeta(5)/20 + zeta(3)*zeta(4)/16 + zeta(3)*zeta(5)/20 + zeta(4)*zeta(5)/20.
In general, Integral_{x=0..1} Integral_{y=0..1} Integral_{z=0..1} ({x/y}*{y/z}*{z/x})^m dx dy dz = 1 - 3*Sum_{j=1..m} zeta(j+1)/(2*(m+1)) + (Sum_{j=1..m} zeta(j+1))*(Sum_{j=1..m} (j+1)*zeta(j+2))/((m+1)^2*(m+2)).

A373702 Decimal expansion of (2 - zeta(2))*zeta(2)*zeta(3)/zeta(6).

Original entry on oeis.org

6, 9, 0, 1, 0, 4, 8, 8, 2, 5, 1, 0, 2, 2, 4, 9, 7, 8, 1, 8, 7, 7, 3, 0, 0, 2, 5, 6, 7, 8, 2, 7, 5, 3, 2, 6, 4, 4, 0, 6, 6, 6, 2, 3, 1, 3, 1, 3, 3, 4, 8, 1, 2, 5, 4, 9, 1, 2, 2, 2, 9, 4, 2, 6, 0, 2, 0, 9, 9, 0, 1, 7, 1, 6, 8, 7, 3, 3, 7, 4, 6, 7, 2, 7, 9, 2, 6, 7, 8, 9, 1, 5, 0, 4, 0, 0, 5, 2, 5, 2
Offset: 0

Views

Author

Stefano Spezia, Jun 13 2024

Keywords

Examples

			0.69010488251022497818773002567827532644066623131...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[(2-Zeta[2])Zeta[2]Zeta[3]/Zeta[6],10,100][[1]]
Previous Showing 11-18 of 18 results.