cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 33 results. Next

A184291 Table read by antidiagonals: T(n,k) = number of distinct n X k toroidal 0..5 arrays.

Original entry on oeis.org

6, 21, 21, 76, 351, 76, 336, 7826, 7826, 336, 1560, 210456, 1119936, 210456, 1560, 7826, 6047412, 181402676, 181402676, 6047412, 7826, 39996, 181410426, 31345666736, 176319685116, 31345666736, 181410426, 39996, 210126, 5597460306
Offset: 1

Views

Author

R. H. Hardin, Jan 10 2011

Keywords

Examples

			Table starts
      6        21          76          336        1560          7826      39996
     21       351        7826       210456     6047412     181410426 5597460306
     76      7826     1119936    181402676 31345666736 5642220395616
    336    210456   181402676 176319685116
   1560   6047412 31345666736
   7826 181410426
  39996
		

Crossrefs

Columns 1-3 are A054625, A184289, A184290.

Programs

  • Mathematica
    T[n_, k_] := (1/(n*k))*Sum[Sum[EulerPhi[c]*EulerPhi[d]*6^(n*(k/LCM[c, d])), {d, Divisors[k]}], {c, Divisors[n]}]; Table[T[n-k+1, k], {n, 1, 8}, {k, 1, n}] // Flatten (* Jean-François Alcover, Oct 30 2017, after Andrew Howroyd *)
  • PARI
    T(n, k) = (1/(n*k)) * sumdiv(n, c, sumdiv(k, d, eulerphi(c) * eulerphi(d) * 6^(n*k/lcm(c,d)))); \\ Andrew Howroyd, Sep 27 2017

Formula

T(n,k) = (1/(n*k)) * Sum_{c|n} Sum_{d|k} phi(c) * phi(d) * 6^(n*k/lcm(c,d)). - Andrew Howroyd, Sep 27 2017

A184331 Table read by antidiagonals: T(n,k) = number of distinct n X k toroidal 0..6 arrays.

Original entry on oeis.org

7, 28, 28, 119, 637, 119, 616, 19684, 19684, 616, 3367, 721525, 4484039, 721525, 3367, 19684, 28249228, 1153450872, 1153450872, 28249228, 19684, 117655, 1153470437, 316504102999, 2077059243301, 316504102999, 1153470437, 117655, 720916
Offset: 1

Views

Author

R. H. Hardin, Jan 11 2011

Keywords

Examples

			Table starts
       7         28          119           616         3367          19684
      28        637        19684        721525     28249228     1153470437
     119      19684      4484039    1153450872 316504102999 90467424400444
     616     721525   1153450872 2077059243301
    3367   28249228 316504102999
   19684 1153470437
  117655
		

Crossrefs

Columns 1-3 are A054626, A184329, A184330.

Programs

  • Mathematica
    T[n_, k_] := (1/(n*k))*Sum[Sum[EulerPhi[c]*EulerPhi[d]*7^(n*(k/LCM[c, d])), {d, Divisors[k]}], {c, Divisors[n]}]; Table[T[n - k + 1, k], {n, 1, 8}, {k, 1, n}] // Flatten (* Jean-François Alcover, Oct 30 2017, after Andrew Howroyd *)
  • PARI
    T(n, k) = (1/(n*k)) * sumdiv(n, c, sumdiv(k, d, eulerphi(c) * eulerphi(d) * 7^(n*k/lcm(c,d)))); \\ Andrew Howroyd, Sep 27 2017

Formula

T(n,k) = (1/(n*k)) * Sum_{c|n} Sum_{d|k} phi(c) * phi(d) * 7^(n*k/lcm(c,d)). - Andrew Howroyd, Sep 27 2017

A209251 Number of n X n checkered tori, allowing rotation and/or reflection of the rows and/or the columns.

Original entry on oeis.org

1, 2, 7, 36, 1459, 340880, 478070832, 2872221202512, 72057630729710704, 7462505061854009276768, 3169126500599982009308551168, 5492677668532714149024993226980288, 38716571525226776692749451887896112574464
Offset: 0

Views

Author

Jonathan Vos Post, Jan 14 2013

Keywords

Comments

Main diagonal from p. 8, Ethier, of Table 4: The number b(m, n) of toroidal m X n binary arrays, allowing rotation and/or reflection of the rows and/or the columns, for m, n = 1, 2, ..., 8 (cf. A222188).

Crossrefs

Main diagonal of A222188.
Cf. A179043, A184271 (n X k toroidal binary arrays).

Programs

  • Mathematica
    b1[m_, n_] := Sum[EulerPhi[c]*EulerPhi[d]*2^(m*n/LCM[c, d]), {c, Divisors[m]}, {d, Divisors[n]}]/(4*m*n);
    b2a[m_, n_] := If[OddQ[m], 2^((m + 1)*n/2)/(4*n), (2^(m*n/2) + 2^((m + 2)*n/2))/(8*n)];
    b2b[m_, n_] := DivisorSum[n, If[# >= 2, EulerPhi[#]*2^((m*n)/#), 0] &]/(4*n);
    b2c[m_, n_] := If[OddQ[m], Sum[If[OddQ[n/GCD[j, n]], 2^((m + 1)*GCD[j, n]/2) - 2^(m*GCD[j, n]), 0], {j, 1, n - 1}]/(4*n), Sum[If[OddQ[n/GCD[j, n]], 2^(m*GCD[j, n]/2) + 2^((m + 2)*GCD[j, n]/2) - 2^(m*GCD[j, n] + 1), 0], {j, 1, n - 1}]/(8*n)];
    b2[m_, n_] := b2a[m, n] + b2b[m, n] + b2c[m, n];
    b3[m_, n_] := b2[n, m]; b4oo[m_, n_] := 2^((m*n - 3)/2);
    b4eo[m_, n_] := 3*2^(m*n/2 - 3); b4ee[m_, n_] := 7*2^(m*n/2 - 4);
    a[m_, n_] := Module[{b}, If[OddQ[m], If[OddQ[n], b = b4oo[m, n], b = b4eo[m, n]], If[OddQ[n], b = b4eo[m, n], b = b4ee[m, n]]]; b += b1[m, n] + b2[m, n] + b3[m, n]; Return[b]];
    a[0] = 1; a[n_] := a[n, n];
    Table[a[n], {n, 0, 12}] (* Jean-François Alcover, Oct 08 2017, after Michel Marcus's code for A222188 *)

Extensions

More terms from Michel Marcus, Feb 13 2013
a(0)=1 prepended by Andrew Howroyd, Sep 30 2017

A368306 Table read by downward antidiagonals: T(n,k) is the number of tilings of the n X k torus up to horizontal reflections by a tile that is not fixed under horizontal reflection.

Original entry on oeis.org

1, 2, 2, 2, 5, 2, 4, 8, 9, 4, 4, 24, 32, 26, 4, 8, 56, 186, 182, 62, 9, 10, 190, 1096, 2130, 1096, 205, 10, 20, 596, 7356, 26296, 26380, 7356, 623, 22, 30, 2102, 49940, 350316, 671104, 350584, 49940, 2171, 30
Offset: 1

Views

Author

Peter Kagey, Dec 21 2023

Keywords

Examples

			Table begins:
  n\k| 1   2    3      4        5         6
  ---+-------------------------------------
   1 | 1   2    2      4        4         8
   2 | 2   5    8     24       56       190
   3 | 2   9   32    186     1096      7356
   4 | 4  26  182   2130    26296    350316
   5 | 4  62 1096  26380   671104  17899020
   6 | 9 205 7356 350584 17897924 954481360
		

Crossrefs

Programs

  • Mathematica
    A368306[n_, m_] := 1/(2*n*m)*(DivisorSum[n, Function[d, DivisorSum[m, EulerPhi[#] EulerPhi[d] 2^(m*n/LCM[#, d]) &]]] + n*If[EvenQ[n], DivisorSum[m, EulerPhi[#] (2^(n*m/LCM[2, #]) + 2^((n - 2)*m/LCM[2, #])*4^(m/#)*Boole[EvenQ[#]]) &]/2, DivisorSum[m, EulerPhi[#]*2^(n*m/#) &, EvenQ]])

A368308 Table read by antidiagonals: T(n,k) is the number of tilings of the n X k torus up to 180-degree rotation by a tile that is not fixed under 180-degree rotation.

Original entry on oeis.org

1, 2, 2, 2, 5, 2, 4, 9, 9, 4, 4, 26, 32, 26, 4, 9, 62, 192, 192, 62, 9, 10, 205, 1096, 2174, 1096, 205, 10, 22, 623, 7440, 26500, 26500, 7440, 623, 22, 30, 2171, 49940, 351336, 671104, 351336, 49940, 2171, 30
Offset: 1

Views

Author

Peter Kagey, Dec 21 2023

Keywords

Examples

			Table begins:
  n\k| 1   2    3      4        5         6
  ---+-------------------------------------
   1 | 1   2    2      4        4         9
   2 | 2   5    9     26       62       205
   3 | 2   9   32    192     1096      7440
   4 | 4  26  192   2174    26500    351336
   5 | 4  62 1096  26500   671104  17904476
   6 | 9 205 7440 351336 17904476 954546880
		

Crossrefs

Programs

  • Mathematica
    A368308[n_, m_] := 1/(2*n*m)*(DivisorSum[n, Function[d, DivisorSum[m, EulerPhi[#] EulerPhi[d] 2^(m*n/LCM[#, d]) &]]] + n*m*2^(n*m/2)*Which[OddQ[n*m], 0, OddQ[n + m], 1/2, True, 3/4])

A255015 Number of toroidal n X n binary arrays, allowing rotation of rows and/or columns as well as matrix transposition.

Original entry on oeis.org

1, 2, 6, 44, 2209, 674384, 954623404, 5744406453840, 144115192471496836, 14925010120653819583840, 6338253001142965335834871200, 10985355337065423791175013899922368, 77433143050453552587418968170813573149024
Offset: 0

Views

Author

Stewart N. Ethier, Feb 12 2015

Keywords

Crossrefs

Cf. A184271 (number of m X n binary arrays allowing rotation of rows/columns), A179043 (main diagonal of A184271), A222188 (number of m X n binary arrays allowing rotation/reflection of rows/columns), A209251 (main diagonal of A222188), A255016 (number of n X n binary arrays allowing rotation/reflection of rows/columns as well as matrix transposition).

Programs

  • Mathematica
    a[n_] := (2 n^2)^(-1) Sum[If[Mod[n, c] == 0, Sum[If[Mod[n, d] == 0, EulerPhi[c] EulerPhi[d] 2^(n^2/ LCM[c, d]), 0], {d, 1, n}], 0], {c, 1, n}] + (2 n)^(-1) Sum[If[Mod[n, d] == 0, EulerPhi[d] 2^(n (n + d - 2 IntegerPart[d/2])/(2 d)), 0], {d, 1, n}];

Formula

a(n) = (2*n^2)^{-1} Sum_{ c divides n } Sum_{ d divides n } phi(c)*phi(d)* 2^(n^2/lcm(c,d)) + (2*n)^{-1} Sum_{ d divides n } phi(d)*2^(n*(n + d - 2 *floor(d/2))/(2*d)), where phi is A000010.

Extensions

a(0)=1 from Alois P. Heinz, Feb 19 2015

A184264 Number of distinct n X 2 toroidal binary arrays.

Original entry on oeis.org

3, 7, 14, 40, 108, 362, 1182, 4150, 14602, 52588, 190746, 699600, 2581428, 9588742, 35792568, 134223910, 505294128, 1908896442, 7233642930, 27487869472, 104715443852, 399822696082, 1529755490574, 5864063066500, 22517998808028, 86607689013412, 333599974893066
Offset: 1

Views

Author

R. H. Hardin, Jan 10 2011

Keywords

Crossrefs

Column 2 of A184271.

Programs

  • Maple
    with(numtheory):
    a:= n-> add(add(phi(c)*phi(d) *2^(2*n/ilcm(c, d)),
            d=divisors(n)), c=[1,2])/(2*n):
    seq(a(n), n=1..30);  # Alois P. Heinz, Aug 25 2012

Formula

a(n) ~ 2^(2*n-1) / n. - Vaclav Kotesovec, Sep 04 2014

Extensions

More terms from Alois P. Heinz, Aug 25 2012

A184265 Number of distinct n X 3 toroidal binary arrays.

Original entry on oeis.org

4, 14, 64, 352, 2192, 14624, 99880, 699252, 4971184, 35792568, 260301176, 1908882592, 14096303344, 104715443852, 781874941184, 5864062367252, 44152937528384, 333599974922264, 2528336632928152, 19215358428046176, 146402730743992960, 1117984489446008100
Offset: 1

Views

Author

R. H. Hardin, Jan 10 2011

Keywords

Crossrefs

Column 3 of A184271.

Programs

  • Maple
    with(numtheory):
    a:= n-> add(add(phi(c)*phi(d) *2^(3*n/ilcm(c, d)),
            d=divisors(n)), c=[1, 3])/(3*n):
    seq(a(n), n=1..30);  # Alois P. Heinz, Aug 25 2012

Formula

a(n) ~ 8^n / (3*n). - Vaclav Kotesovec, Sep 04 2014

Extensions

More terms from Alois P. Heinz, Aug 25 2012

A184266 Number of distinct n X 4 toroidal binary arrays.

Original entry on oeis.org

6, 40, 352, 4156, 52488, 699600, 9587580, 134223976, 1908881900, 27487869472, 399822505524, 5864063067176, 86607686432616, 1286742765058960, 19215358428046176, 288230376353050696, 4340410370537249376, 65588423376053309360, 994182417449857925988
Offset: 1

Views

Author

R. H. Hardin, Jan 10 2011

Keywords

Crossrefs

Column 4 of A184271.

Programs

  • Maple
    with(numtheory):
    a:= n-> add(add(phi(c)*phi(d) *2^(4*n/ilcm(c, d)),
            d=divisors(n)), c=[1,2,4])/(4*n):
    seq(a(n), n=1..30);  # Alois P. Heinz, Aug 25 2012

Formula

a(n) ~ 2^(4*n-2) / n. - Vaclav Kotesovec, Sep 04 2014

Extensions

More terms from Alois P. Heinz, Aug 25 2012

A184267 Number of distinct n X 5 toroidal binary arrays.

Original entry on oeis.org

8, 108, 2192, 52488, 1342208, 35792568, 981706832, 27487816992, 781874936816, 22517998808448, 655069036708592, 19215358428046176, 567592125344909792, 16865594582168158776, 503719091506096394752, 15111572745196608608736, 455125014443154512836736
Offset: 1

Views

Author

R. H. Hardin, Jan 10 2011

Keywords

Crossrefs

Column 5 of A184271.

Programs

  • Maple
    with(numtheory):
    a:= n-> add(add(phi(c)*phi(d) *2^(5*n/ilcm(c, d)),
            d=divisors(n)), c=[1,5])/(5*n):
    seq(a(n), n=1..25);  # Alois P. Heinz, Aug 25 2012

Formula

a(n) ~ 32^n / (5*n). - Vaclav Kotesovec, Sep 04 2014

Extensions

More terms from Alois P. Heinz, Aug 25 2012
Previous Showing 21-30 of 33 results. Next