cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A184951 Irregular triangle C(n,g) counting the connected 5-regular simple graphs on 2n vertices with girth at least g.

Original entry on oeis.org

1, 3, 60, 1, 7848, 1, 3459383, 7, 2585136675, 388, 2807105250897, 406824
Offset: 3

Views

Author

Jason Kimberley, Jan 10 2012

Keywords

Comments

The first column is for girth at least 3. The row length sequence starts: 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4. The row length is incremented to g-2 when 2n reaches A054760(5,g).

Examples

			1;
3;
60, 1;
7848, 1;
3459383, 7;
2585136675, 388;
2807105250897, 406824;
		

Crossrefs

Connected 5-regular simple graphs with girth at least g: this sequence (triangle); chosen g: A006821 (g=3), A058275 (g=4), A205295 (g=5).
Connected 5-regular simple graphs with girth exactly g: A184950 (triangle); chosen g: A184953 (g=3), A184954 (g=4), A184955 (g=5).
Triangular arrays C(n,g) counting connected simple k-regular graphs on n vertices with girth at least g: A185131 (k=3), A184941 (k=4), this sequence (k=5), A184961 (k=6), A184971 (k=7), A184981 (k=8).

Extensions

a(14) from Jason Kimberley, Dec 26 2012

A184961 Irregular triangle C(n,g) read by rows, counting the connected 6-regular simple graphs on n vertices with girth at least g.

Original entry on oeis.org

1, 1, 4, 21, 266, 7849, 1, 367860, 0, 21609300, 1, 1470293675, 1, 113314233808, 9, 9799685588936, 6
Offset: 7

Views

Author

Jason Kimberley, Jan 10 2012

Keywords

Comments

The first column is for girth at least 3. The row length sequence starts: 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3. The row length is incremented to g-2 when n reaches A054760(6,g).

Examples

			Triangle begins:
1;
1;
4;
21;
266;
7849, 1;
367860, 0;
21609300, 1;
1470293675, 1;
113314233808, 9;
9799685588936, 6;
		

Crossrefs

Connected 6-regular simple graphs with girth at least g: this sequence (triangle); chosen g: A006822 (g=3), A058276 (g=4).
Connected 6-regular simple graphs with girth exactly g: A184960 (triangle); chosen g: A184963 (g=3), A184964 (g=4).
Triangular arrays C(n,g) counting connected simple k-regular graphs on n vertices with girth at least g: A185131 (k=3), A184941 (k=4), A184951 (k=5), this sequence (k=6), A184971 (k=7), A184981 (k=8).

A184971 Irregular triangle C(n,g) counting the connected 7-regular simple graphs on 2n vertices with girth at least g.

Original entry on oeis.org

1, 5, 1547, 21609301, 1, 733351105934, 1
Offset: 4

Views

Author

Jason Kimberley, Jan 10 2012

Keywords

Comments

The first column is for girth at least 3. The row length sequence starts: 1, 1, 1, 2, 2, 2, 2, 2. The row length is incremented to g-2 when 2n reaches A054760(7,g).

Examples

			1;
5;
1547;
21609301, 1;
733351105934, 1;
?, 8;
?, 741;
?, 2887493;
		

Crossrefs

Connected 7-regular simple graphs with girth at least g: this sequence (triangle); chosen g: A014377 (g=3), A181153 (g=4).
Connected 7-regular simple graphs with girth exactly g: A184970 (triangle); chosen g: A184973 (g=3), A184974 (g=4).
Triangular arrays C(n,g) counting connected simple k-regular graphs on n vertices with girth at least g: A185131 (k=3), A184941 (k=4), A184951 (k=5), A184961 (k=6), this sequence (k=7), A184981 (k=8).

A184991 Irregular triangle C(n,g) counting the connected 9-regular simple graphs on 2n vertices with girth at least g.

Original entry on oeis.org

1, 9, 88193, 113314233813
Offset: 5

Views

Author

Jason Kimberley, Feb 03 2012

Keywords

Comments

The first column is for girth at least 3. The row length is incremented to g-2 when 2n reaches A054760(9,g).

Examples

			1;
 9;
 88193;
 113314233813;
 ?, 1;
 ?, 1;
 ?, 14;
		

Crossrefs

Connected 9-regular simple graphs with girth at least g: this sequence (triangle); chosen g: A014381 (g=3), A181170 (g=4).
Connected 9-regular simple graphs with girth exactly g: A184990 (triangle); chosen g: A184983 (g=3).
Triangular arrays C(n,g) counting connected simple k-regular graphs on n vertices with girth at least g: A185131 (k=3), A184941 (k=4), A184951 (k=5), A184961 (k=6), A184971 (k=7), A184981 (k=8), this sequence (k=9).

A210709 Number of trivalent connected simple graphs with 2n nodes and girth at least 9.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 18
Offset: 0

Views

Author

Jason Kimberley, Dec 20 2012

Keywords

Crossrefs

Trivalent simple graphs with girth at least g: A185131 (triangle); chosen g: A002851 (g=3), A014371 (g=4), A014372 (g=5), A014374 (g=6), A014375 (g=7), A014376 (g=8), this sequence (g=9).
Trivalent simple graphs with girth exactly g: A198303 (triangle); chosen g: A006923 (g=3), A006924 (g=4), A006925 (g=5), A006926 (g=6), A006927 (g=7).

Formula

a(29) = a(A000066(9)/2) = A052453(9) = 18 is the number of (3,9) cages.

A260811 Number of trivalent bipartite connected simple graphs with 2n nodes and girth at least 6.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 1, 1, 3, 10, 28, 162, 1201, 11415, 125571, 1514489
Offset: 0

Views

Author

Dylan Thurston, Jul 31 2015

Keywords

Comments

The null graph on 0 vertices is vacuously connected, 3-regular, and bipartite; since it is acyclic, it has infinite girth.

Crossrefs

Connected 3-regular simple graphs with girth at least g: A185131 (triangle); chosen g: A002851 (g=3), A014371 (g=4), A014372 (g=5), A014374 (g=6), A014375 (g=7), A014376 (g=8).
Connected bipartite trivalent simple graphs with girth at least g: A006823 (g=4), this sequence (g=6), A260813 (g=8).

A260813 Number of trivalent bipartite connected simple graphs with 2n nodes and girth at least 8.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 3, 10, 101, 2510, 79605, 2607595, 81716416, 2472710752
Offset: 0

Views

Author

Dylan Thurston, Jul 31 2015

Keywords

Comments

The null graph on 0 vertices is vacuously connected, 3-regular, and bipartite; since it is acyclic, it has infinite girth.

Crossrefs

Connected 3-regular simple graphs with girth at least g: A185131 (triangle); chosen g: A002851 (g=3), A014371 (g=4), A014372 (g=5), A014374 (g=6), A014375 (g=7), A014376 (g=8).
Connected bipartite trivalent simple graphs with girth at least g: A006823 (g=4), A260811 (g=6), this sequence (g=8).

Extensions

a(23)-a(24) from the House-of-Graphs added by R. J. Mathar, Sep 29 2017
a(25)-a(26) from Jan Goedgebeur, Aug 17 2021
Previous Showing 11-17 of 17 results.