A206437 Triangle read by rows: T(j,k) is the k-th part of the j-th region of the set of partitions of n, if 1 <= j <= A000041(n).
1, 2, 1, 3, 1, 1, 2, 4, 2, 1, 1, 1, 3, 5, 2, 1, 1, 1, 1, 1, 2, 4, 2, 3, 6, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 3, 5, 2, 4, 7, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 4, 2, 3, 6, 3, 2, 2, 5, 4, 8, 4, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1
Examples
-------------------------------------------
Region j Triangle of parts
-------------------------------------------
1 1;
2 2,1;
3 3,1,1;
4 2;
5 4,2,1,1,1;
6 3;
7 5,2,1,1,1,1,1;
8 2;
9 4,2;
10 3;
11 6,3,2,2,1,1,1,1,1,1,1;
12 3;
13 5,2;
14 4;
15 7,3,2,2,1,1,1,1,1,1,1,1,1,1,1;
.
The rotated triangle shows each row as a partition:
7
4 3
5 2
3 2 2
6 1
3 3 1
4 2 1
2 2 2 1
5 1 1
3 2 1 1
4 1 1 1
2 2 1 1 1
3 1 1 1 1
2 1 1 1 1 1
1 1 1 1 1 1 1
.
Alternative interpretation of this sequence:
Triangle read by rows in which row r lists the parts of the last section of the set of partitions of r ordered by regions (see comments):
[1];
[2,1];
[3,1,1];
[2],[4,2,1,1,1];
[3],[5,2,1,1,1,1,1];
[2],[4,2],[3],[6,3,2,2,1,1,1,1,1,1,1];
[3],[5,2],[4],[7,3,2,2,1,1,1,1,1,1,1,1,1,1,1];
Links
- Robert Price, Table of n, a(n) for n = 1..321, first 75 regions.
- Omar E. Pol, Illustration of the seven regions of 5
- Omar E. Pol, Illustration of initial terms, regions = 1..77 (2D view)
- Omar E. Pol, Illustration of initial terms, regions = 1..30 (3D view)
- Omar E. Pol, Visualization of regions in a diagram for A006128
- Robert Price, Mathematica program to draw diagram up to n=28
Crossrefs
Programs
-
Mathematica
lex[n_]:=DeleteCases[Sort@PadRight[Reverse /@ IntegerPartitions@n], x_ /; x==0, 2]; reg = {}; l = {}; For[j = 1, j <= 22, j++, mx = Max@lex[j][[j]]; AppendTo[l, mx]; For[i = j, i > 0, i--, If[l[[i]] > mx, Break[]]]; AppendTo[reg, Take[Reverse[First /@ lex[mx]], j - i]]; ]; Flatten@reg (* Robert Price, Apr 21 2020, revised Jul 24 2020 *)
Extensions
Further edited by Omar E. Pol, Mar 31 2012, Jan 27 2013
Minor edits by Omar E. Pol, Apr 23 2020
Comments corrected (following a suggestion from Peter Munn) by Omar E. Pol, Jul 20 2025
Comments