cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A376913 Decimal expansion of Product_{k=1..8} Gamma(k/3).

Original entry on oeis.org

5, 2, 3, 8, 6, 5, 9, 6, 2, 5, 1, 8, 5, 6, 5, 8, 4, 1, 0, 3, 2, 9, 2, 3, 2, 0, 9, 9, 9, 7, 6, 3, 6, 6, 2, 6, 8, 1, 3, 5, 9, 7, 7, 3, 9, 9, 2, 1, 5, 7, 5, 6, 6, 5, 0, 5, 6, 3, 4, 8, 0, 9, 7, 6, 2, 9, 1, 0, 5, 5, 8, 0, 4, 6, 4, 1, 9, 1, 5, 1, 8, 2, 3, 1, 9, 1, 6, 8, 2, 1
Offset: 1

Views

Author

Paolo Xausa, Oct 11 2024

Keywords

Examples

			5.2386596251856584103292320999763662681359773992...
		

Crossrefs

Other identities for Product_{k=1..m} Gamma(k/3): A073005 (m = 1), A186706 (m = 2 and m = 3), A376859 (m = 4), A376911 (m = 5 and m = 6), A376912 (m = 7).

Programs

  • Mathematica
    First[RealDigits[640*Pi^3/(2187*Sqrt[3]), 10, 100]]

Formula

Equals 640*Pi^3/(2187*sqrt(3)) = 640*A091925/(3^7*A002194) (cf. eq. 90 in Weisstein link).

A271923 Numerator of (1/3)*(Product_{j=0..n-1} (((2*j+1)*(3*j+4))/((j+1)*(6*j+1))) - 1).

Original entry on oeis.org

1, 5, 29, 52, 913, 1693, 69769, 658529, 1667651, 57873, 1616141, 1035959, 79918969, 3244922897, 3402714857, 6606018008, 51386679347, 5504537914811, 622652618545649, 10572475711004, 10931562934889, 235301799307039, 4608689892802861, 9034390134407023, 488936376609325, 959905250448181
Offset: 1

Views

Author

N. J. A. Sloane, May 04 2016

Keywords

Examples

			1, 5/3, 29/13, 52/19, 913/285, 1693/465, 69769/17205, 658529/147963, 1667651/ 345247, 57873/11137, 1616141/291153, 1035959/175741, 79918969/12829093, ...
		

Crossrefs

Sequences of fractions from de Gier paper: A271919-A271926.
Cf. A271924 (denominators), A073005, A186706.

Programs

  • Maple
    f3:=proc(n) local j;
    (1/3)*(mul(((2*j+1)*(3*j+4))/((j+1)*(6*j+1)),j=0..n-1)-1); end;
    t3:=[seq(f3(n),n=1..50)];
    map(numer,t3);
    map(denom,t3);
  • Mathematica
    a[n_] := (1/3)*(Product[((2*j + 1)*(3*j + 4))/((j + 1)*(6*j + 1)), {j, 0, n - 1}] - 1) // Numerator;
    Array[a, 26] (* Jean-François Alcover, Nov 30 2017 *)

Formula

a(n)/A271924(n) ~ c * (2*n)^(2/3), where c = Gamma(1/3)*sqrt(3)/(2*Pi) = A073005/A186706. - Amiram Eldar, Aug 17 2025

A271925 Numerator of (Product_{j=0..n-1} (((2*j+1)*(3*j+4))/((j+1)*(6*j+1))) - 1).

Original entry on oeis.org

3, 5, 87, 156, 913, 1693, 69769, 658529, 5002953, 173619, 1616141, 3107877, 239756907, 3244922897, 3402714857, 6606018008, 51386679347, 5504537914811, 622652618545649, 10572475711004, 10931562934889, 235301799307039, 4608689892802861, 9034390134407023, 488936376609325, 959905250448181
Offset: 1

Views

Author

N. J. A. Sloane, May 04 2016

Keywords

Examples

			3, 5, 87/13, 156/19, 913/95, 1693/155, 69769/5735, 658529/49321, 5002953/345247, 173619/11137, 1616141/97051, 3107877/175741, 239756907/12829093, ...
		

Crossrefs

Sequences of fractions from de Gier paper: A271919-A271926.
Cf. A271926 (denominators), A073005, A186706.

Programs

  • Maple
    f3:=proc(n) local j;
    (mul(((2*j+1)*(3*j+4))/((j+1)*(6*j+1)),j=0..n-1)-1); end;
    t3:=[seq(f3(n),n=1..50)];
    map(numer,t3);
    map(denom,t3);
  • Mathematica
    Table[Product[(2*j+1)*(3*j+4)/((j+1)*(6*j+1)),{j,0,n-1}]-1, {n,1,20}]//Numerator (* Vaclav Kotesovec, Oct 13 2017 *)

Formula

a(n)/A271926(n) ~ c * (2*n)^(2/3), where c = Gamma(1/3)*3^(3/2)/(2*Pi) = 3*A073005/A186706. - Amiram Eldar, Aug 17 2025

A358559 Decimal expansion of Bi(0), where Bi is the Airy function of the second kind.

Original entry on oeis.org

6, 1, 4, 9, 2, 6, 6, 2, 7, 4, 4, 6, 0, 0, 0, 7, 3, 5, 1, 5, 0, 9, 2, 2, 3, 6, 9, 0, 9, 3, 6, 1, 3, 5, 5, 3, 5, 9, 4, 7, 2, 8, 1, 8, 8, 6, 4, 8, 5, 9, 6, 5, 0, 5, 0, 4, 0, 8, 7, 8, 7, 5, 3, 0, 1, 4, 2, 9, 6, 5, 1, 9, 3, 0, 5, 5, 2, 0, 6, 4, 0, 5, 2, 9, 3
Offset: 0

Views

Author

Dumitru Damian, Nov 22 2022

Keywords

Examples

			0.61492662744600073515092236909361355359472818864859650504087875301429651...
		

References

  • F. W. J. Olver, Asymptotics and Special Functions, Academic Press, ISBN 978-0-12-525856-2, 1974.
  • Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 56, page 559.

Crossrefs

Cf. A284867 (Ai(0)), A284868 (Ai'(0)), this sequence (Bi(0)), A358561 (Bi'(0)), A358564(Gi(0)).

Programs

  • Mathematica
    RealDigits[AiryBi[0], 10, 120][[1]] (* Amiram Eldar, Nov 28 2022 *)
  • PARI
    airy(0)[2]
    
  • PARI
    airy(0)[1]*sqrt(3)
    
  • PARI
    3^(1/3)*gamma(1/3)/(2*Pi)
    
  • SageMath
    airy_bi(0).n(algorithm='scipy', prec=250)

Formula

Bi(0) = A284867*A002194.
Bi(0) = A358564*3.
Bi(0) = 1/(3^(1/6)*A073006).
Bi(0) = A073005/(3^(1/6)*A186706).
Bi(0) = A073005/(3^(1/6)*2*A093602).
Bi(0) = 3^(1/3)*A073005/(2*A000796).
Bi(0) = A252799/(3^(1/6)*BarnesG[5/3]).
Bi(0) = 3^(1/4)/(2^(2/9) * Pi^(1/3) * AGM(2,(sqrt(2+sqrt(3))))^(1/3)), where AGM is the arithmetic-geometric mean.

A358561 Decimal expansion of the derivative Bi'(0), where Bi is the Airy function of the second kind.

Original entry on oeis.org

4, 4, 8, 2, 8, 8, 3, 5, 7, 3, 5, 3, 8, 2, 6, 3, 5, 7, 9, 1, 4, 8, 2, 3, 7, 1, 0, 3, 9, 8, 8, 2, 8, 3, 9, 0, 8, 6, 6, 2, 2, 6, 7, 9, 9, 2, 1, 2, 2, 6, 2, 0, 6, 1, 0, 8, 2, 8, 0, 8, 7, 7, 8, 3, 7, 2, 3, 3, 0, 7, 5, 5, 0, 0, 9, 7, 8, 0, 6, 4, 7, 1, 8, 5, 0, 4
Offset: 0

Views

Author

Dumitru Damian, Nov 22 2022

Keywords

Examples

			0.44828835735382635791482371039882839086622679921226206108280877837233075...
		

References

  • F. W. J. Olver, Asymptotics and Special Functions, Academic Press, ISBN 978-0-12-525856-2, 1974.

Crossrefs

Cf. A284867 (Ai(0)), A284868 (Ai'(0)), A358559 (Bi(0)), this sequence (Bi'(0)), A358564 (Gi(0)).

Programs

  • Mathematica
    RealDigits[AiryBi'[0], 10, 120][[1]] (* Amiram Eldar, Nov 28 2022 *)
  • PARI
    derivnum(x=0, airy(x)[2])
    
  • SageMath
    airy_bi_prime(0).n(algorithm='scipy', prec=250)

Formula

Bi'(0) = A284868*A002194.
Bi'(0) = 3*Gi'(0), where Gi' is the derivative of the inhomogeneous Airy function of the first kind.
Bi'(0) = 3^(1/6)/A073005.
Bi'(0) = A073006*3^(1/6)/A186706.
Bi'(0) = A073006*3^(1/6)/2*A093602.
Bi'(0) = 3^(2/3)*A073006/(2*A000796).
Bi'(0) = 3^(1/4)*AGM(2,(sqrt(2+sqrt(3))))^(1/3)/(2^(7/9) * Pi^(2/3)), where AGM is the arithmetic-geometric mean.

A358564 Decimal expansion of Gi(0), where Gi is the inhomogeneous Airy function of the first kind (also called Scorer function).

Original entry on oeis.org

2, 0, 4, 9, 7, 5, 5, 4, 2, 4, 8, 2, 0, 0, 0, 2, 4, 5, 0, 5, 0, 3, 0, 7, 4, 5, 6, 3, 6, 4, 5, 3, 7, 8, 5, 1, 1, 9, 8, 2, 4, 2, 7, 2, 9, 5, 4, 9, 5, 3, 2, 1, 6, 8, 3, 4, 6, 9, 5, 9, 5, 8, 4, 3, 3, 8, 0, 9, 8, 8, 3, 9, 7, 6, 8, 5, 0, 6, 8, 8, 0, 1, 7, 6, 4, 6, 2
Offset: 0

Views

Author

Dumitru Damian, Nov 22 2022

Keywords

Examples

			0.204975542482000245050307456364537851198242729549532168346959584338098839...
		

References

  • Scorer, R. S., Numerical evaluation of integrals of the form Integral_{x=x1..x2} f(x)*e^(i*phi(x))dx and the tabulation of the function Gi(z)=(1/Pi)*Integral_{u=0..oo} sin(u*z+u^3/3) du, Quart. J. Mech. Appl. Math. 3 (1950), 107-112.

Crossrefs

Cf. A284867 (Ai(0)), A284868 (Ai'(0)), A358559 (Bi(0)), A358561 (Bi'(0)), this sequence (Gi(0)).

Programs

  • Mathematica
    First[RealDigits[N[ScorerGi[0],90]]] (* Stefano Spezia, Nov 28 2022 *)
  • PARI
    airy(0)[2]/3
    
  • PARI
    1/(3^(7/6)*gamma(2/3))
    
  • PARI
    sqrt(3)*gamma(1/3)/(3^(7/6)*2*Pi)
    
  • PARI
    1/(3^(3/4)*2^(2/9)*Pi^(1/3)*sqrtn(agm(2,(sqrt(2+sqrt(3)))),3))
    
  • SageMath
    1/(3^(7/6)*gamma(2/3)).n(algorithm='scipy', prec=250)

Formula

Gi(0) = A358559/3.
Gi(0) = A284867/A002194.
Gi(0) = Hi(0)/2, where Hi is the inhomogeneous Airy function of the second kind.
Gi(0) = 1/(3^(7/6)*A073006).
Gi(0) = A073005/(3^(7/6)*A186706).
Gi(0) = A073005/(3^(7/6)*2*A093602).
Gi(0) = A073005/(3^(4/6)*2*A000796).
Gi(0) = A252799/(3^(7/6)*BarnesG(5/3)).
Gi(0) = 1/(3^(3/4) * 2^(2/9) * Pi^(1/3) * AGM(2,(sqrt(2+sqrt(3))))^(1/3)), where AGM is the arithmetic-geometric mean.

A220610 Decimal expansion of sqrt(2*Pi^3).

Original entry on oeis.org

7, 8, 7, 4, 8, 0, 4, 9, 7, 2, 8, 6, 1, 2, 0, 9, 8, 7, 2, 1, 4, 5, 3, 2, 2, 9, 9, 7, 2, 3, 3, 6, 0, 2, 2, 7, 1, 1, 5, 5, 8, 4, 2, 6, 9, 1, 3, 9, 9, 3, 6, 6, 9, 2, 9, 1, 2, 8, 6, 5, 3, 8, 6, 5, 2, 0, 3, 4, 5, 5, 3, 2, 6, 6, 0, 0, 8, 2, 7, 8, 0, 8, 8, 7, 9, 7, 3
Offset: 1

Views

Author

Bruno Berselli, Dec 25 2012

Keywords

Comments

This is the case n=4 of Product_{i=1..n-1} Gamma(i/n) = sqrt((2*Pi)^(n-1)/n).
Continued fraction expansion: 7, 1, 6, 1, 79, 4, 7, 1, 1, 1, 1, 1, 1, 4, 2, 3, 73, 1, 2, 1, 14, 3, 2, 1, 1, 2, 3, 1, ...

Examples

			7.8748049728612098721453229972336022711558426913993669291...
		

Crossrefs

Cf. numbers of the form sqrt((2*Pi)^(n-1)/n) -- see the first comment: A002161 (n=2), A186706 (n=3).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); Sqrt(2*Pi(R)^3); // G. C. Greubel, Sep 29 2018
  • Maple
    evalf(sqrt(2*Pi^3),120); # Muniru A Asiru, Sep 30 2018
  • Mathematica
    RealDigits[Sqrt[2 Pi^3], 10, 90][[1]]
  • Maxima
    fpprec:90; ev(bfloat(sqrt(2*%pi^3)));
    
  • PARI
    default(realprecision, 100); sqrt(2*Pi^3) \\ G. C. Greubel, Sep 29 2018
    

Formula

A253623 Expansion of phi(q) * f(q, q^2)^2 / f(q^2, q^4) in powers of q where phi(), f() are Ramanujan theta functions.

Original entry on oeis.org

1, 4, 6, 4, 0, 0, 6, 8, 6, 4, 0, 0, 0, 8, 12, 0, 0, 0, 6, 8, 0, 8, 0, 0, 6, 4, 12, 4, 0, 0, 0, 8, 6, 0, 0, 0, 0, 8, 12, 8, 0, 0, 12, 8, 0, 0, 0, 0, 0, 12, 6, 0, 0, 0, 6, 0, 12, 8, 0, 0, 0, 8, 12, 8, 0, 0, 0, 8, 0, 0, 0, 0, 6, 8, 12, 4, 0, 0, 12, 8, 0, 4, 0, 0
Offset: 0

Views

Author

Michael Somos, Jan 06 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

Examples

			G.f. = 1 + 4*x + 6*x^2 + 4*x^3 + 6*x^6 + 8*x^7 + 6*x^8 + 4*x^9 + 8*x^13 + ...
		

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(12), 1), 83); A[1] + 4*A[2] + 6*A[3] + 4*A[4];
  • Mathematica
    a[ n_] := SeriesCoefficient[ 1 + 2 Sum[ (1 + Mod[k, 2]) q^k / (1 - q^k + q^(2 k)), {k, n}], {q, 0, n}];
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q]^2 EllipticTheta[ 4, 0, q^3]^2 / (EllipticTheta[ 4, 0, q^2] EllipticTheta[ 4, 0, q^6]), {q, 0, n}];
    a[ n_] := If[ n < 1, Boole[n == 0], 2 (-1)^n Sum[(-1)^(n/d) {2, -1, 0, 1, -2, 0}[[ Mod[ d, 6, 1] ]], {d, Divisors @ n}]];
  • PARI
    {a(n) = if( n<1, n==0, 2 * sumdiv(n, d, (n/d%2 + 1) * (-1)^(d\3) * (d%3>0) ))};
    
  • PARI
    {a(n) = if( n<1, n==0, 2 * (-1)^n * sumdiv(n, d, (-1)^(n/d) * [0, 2, -1, 0, 1, -2][d%6 + 1]))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^8 * eta(x^3 + A)^4 * eta(x^12 + A) / (eta(x + A)^4 * eta(x^4 + A)^3 * eta(x^6 + A)^4), n))};
    
  • PARI
    {a(n) = my(A, p, e); if( n<1, n==0, A = factor(n); 4 * prod( k=1, matsize(A)[1], if( p=A[k, 1], e=A[k, 2]; if( p==2, 3/2*(e%2), if( p==3, 1, if( p%6 == 1, e+1, 1-e%2))))))};
    

Formula

Expansion of phi(q)^2 * phi(-q^3)^2 / (phi(-q^2) * phi(-q^6)) = psi(q) * psi(-q^3) * (chi(q) * chi(-q^3))^3 in powers of q where phi(), psi(), chi() are Ramanujan theta functions.
Expansion of (2*a(q) + 3*a(q^2) - 2*a(q^4)) / 3 = (b(q) - 2*b(q^4)) * (b(q) - 4*b(q^4)) / (3*b(q^2)) in powers of q where a(), b() are cubic AGM theta functions.
Expansion of eta(q^2)^8 * eta(q^3)^4 * eta(q^12) / (eta(q)^4 * eta(q^4)^3 * eta(q^6)^4) in powers of q.
Euler transform of period 12 sequence [ 4, -4, 0, -1, 4, -4, 4, -1, 0, -4, 4, -2, ...].
Moebius transform is period 12 sequence [ 4, 2, 0, -6, -4, 0, 4, 6, 0, -2, -4, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (12 t)) = 48^(1/2) (t/i) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A253625.
a(n) = 4*b(n) where b() is multiplicative with b(2^e) = (3/4) * (1 - (-1)^e) if e>0, b(3^e) = 1, b(p^e) = e+1 if p == 1 (mod 6), b(p^e) = (1 + (-1)^e)/2 if p == 5 (mod 6).
G.f.: 1 + Sum_{k>0} (1 + (k mod 2)) * q^k / (1 - q^k + q^(2*k)).
G.f.: Product_{k>0} (1 + q^k) * (1 - q^(2*k)) * (1 - q^(3*k)) * (1 + q^(6*k)) / ((1 + q^(2*k)) * (1 - q^k + q^(2*k)))^3.
a(n) = (-1)^n * A244339(n). a(2*n) = A004016(n). a(2*n + 1) = 4 * A033762(n). a(3*n) = a(n). a(6*n + 1) = 4 * A097195(n). a(6*n + 2) = 6 * A033687(n). a(6*n + 4) = a(6*n = 5) = 0.
a(12*n + 1) = 4 * A123884(n). a(12*n + 2) = 6 * A097195(n). a(12*n + 3) = 4 * A112604(n). a(12*n + 7) = 8 * A121361(n). a(12*n + 9) = 4 * A112605(n).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 2*Pi/sqrt(3) = 3.627598... (A186706). - Amiram Eldar, Dec 30 2023
Previous Showing 11-18 of 18 results.