cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A253915 Primes p such that the polynomial k^4 + k^3 + k^2 + k + p yields primes for k = 0..8, but not for k = 9.

Original entry on oeis.org

43, 967, 11923, 213943, 2349313, 3316147, 30637567, 33421159, 39693817, 49978447, 105963769, 143405887, 148248949, 153756073, 156871549, 172981279, 187310803, 196726693, 203625283, 211977523, 220825453, 268375879, 350968543, 357834283, 414486697, 427990369
Offset: 1

Views

Author

K. D. Bajpai, Jan 18 2015

Keywords

Comments

All the terms in this sequence are congruent to 1 (mod 3).

Examples

			a(1) = 43:
0^4 + 0^3 + 0^2 + 0 + 43 =   43;
1^4 + 1^3 + 1^2 + 1 + 43 =   47;
2^4 + 2^3 + 2^2 + 2 + 43 =   73;
3^4 + 3^3 + 3^2 + 3 + 43 =  163;
4^4 + 4^3 + 4^2 + 4 + 43 =  383;
5^4 + 5^3 + 5^2 + 5 + 43 =  823;
6^4 + 6^3 + 6^2 + 6 + 43 = 1597;
7^4 + 7^3 + 7^2 + 7 + 43 = 2843;
8^4 + 8^3 + 8^2 + 8 + 43 = 4723;
all nine are primes, and
9^4 + 9^3 + 9^2 + 9 + 43 = 7423 = 13*571 is composite.
The next prime for p=43 appears for k=13, namely 30983.
		

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[118*10^5]],AllTrue[#+{0,4,30,120,340,780,1554,2800,4680},PrimeQ]&&CompositeQ[#+7380]&] (* Harvey P. Dale, Sep 10 2021 *)
  • PARI
    forprime(p=1, 1e10, if(isprime(p+4)&& isprime(p+30)&& isprime(p+120)&& isprime(p+340)&& isprime(p+780)&& isprime(p+1554)&& isprime(p+2800)&& isprime(p+4680) && !isprime(p+7380), print1(p,", ")))

Extensions

Edited by Wolfdieter Lang, Feb 20 2015
Corrected and extended by Harvey P. Dale, Sep 10 2021

A273597 min { x >= 0 | A273595(n) + prime(n)*x + x^2 is composite }, where A273595(n) is such that this is a local maximum.

Original entry on oeis.org

39, 38, 37, 35, 34, 32, 31, 29, 26, 25, 22, 20, 19, 17, 14, 12, 11, 12, 12, 12, 12, 16, 15, 12, 12, 13, 14, 13, 13, 14, 13, 13, 13, 13, 14, 14, 14, 16, 16, 16, 15, 15, 16, 16, 17
Offset: 2

Views

Author

M. F. Hasler, May 26 2016

Keywords

Comments

See A273595 for further information and (cross)references.
From the initial values, the sequence seems strictly decreasing, with a(n+1) - a(n) = (prime(n+1) - prime(n))/2; however, this property does not persist beyond n = 16.
This is the subsequence of A273770 with indices n corresponding to odd primes 2n+1, see formula. - M. F. Hasler, Feb 17 2020

Crossrefs

Programs

Formula

a(n) = (81 - prime(n))/2 for 1 < n < 17.
a(n) = A273770((prime(n) - 1)/2). - M. F. Hasler, Feb 17 2020

Extensions

Edited and extended using A273756(0..100) due to Don Reble, by M. F. Hasler, Feb 17 2020

A385035 Primes p such that p + 8, p + 14, p + 18 and p + 20 are also primes.

Original entry on oeis.org

23, 53, 89, 263, 599, 1283, 1979, 3449, 5399, 5639, 11813, 14543, 41213, 42443, 44249, 47129, 55799, 57773, 65699, 74699, 75983, 79613, 84299, 87539, 88643, 88793, 88799, 113153, 115763, 126473, 143813, 148913, 150203, 160073, 163973, 167099, 176489, 178799, 178889, 209249
Offset: 1

Views

Author

Alexander Yutkin, Jun 15 2025

Keywords

Examples

			p=23: 23+8=31, 23+14=37, 23+18=41, 23+20=43 —> prime quintuple: (23, 31, 37, 41, 43).
		

Crossrefs

Cf. A000040.
Cf. A172454 [2, 4, 6], A078855 [6, 4, 2], A187057 [2, 4, 6, 8].

Programs

  • Magma
    [p: p in PrimesUpTo(300000) | IsPrime(p+8) and IsPrime(p+14) and IsPrime(p+18) and IsPrime(p+20)]; // Vincenzo Librandi, Jul 04 2025
  • Maple
    q:= p-> andmap(i-> isprime(p+i), [0, 8, 14, 18, 20]):
    select(q, [5+6*i$i=0..35000])[];  # Alois P. Heinz, Jun 16 2025
  • Mathematica
    Select[Prime[Range[20000]], AllTrue[#+{8, 14, 18,20}, PrimeQ]&] (* Stefano Spezia, Jun 18 2025 *)

A385824 Primes p such that p + 10, p + 18, p + 24, p + 28 and p + 30 are also primes.

Original entry on oeis.org

13, 43, 79, 14533, 41203, 42433, 47119, 88789, 113143, 150193, 340909, 348433, 416389, 556243, 576193, 609589, 626599, 637699, 669649, 715849, 752263, 855709, 859249, 891799, 1107763, 1146763, 1189603, 1191079, 1201999, 1210369, 1225099, 1416043, 1510189, 1601599, 1893163
Offset: 1

Views

Author

Alexander Yutkin, Jul 09 2025

Keywords

Comments

Initial members of prime sextuples that correspond to the difference pattern [10, 8, 6, 4, 2]. The primes in a sextuple do not have to be consecutive.

Examples

			p=13: 13+10=23, 13+18=31, 13+24=37, 13+28=41, 13+30=43 —> prime sextuple: (13, 23, 31, 37, 41, 43).
		

Crossrefs

Cf. A000040.
Cf. A187057 [2, 4, 6, 8], A385035 [8, 6, 4, 2], A187058 [2, 4, 6, 8, 10].

Programs

  • Mathematica
    Select[Prime[Range[150000]], And @@ PrimeQ[# + {10, 18, 24, 28, 30}] &] (* Amiram Eldar, Jul 09 2025 *)
Previous Showing 11-14 of 14 results.