A374746
Number of integer compositions of n whose leaders of weakly decreasing runs are strictly decreasing.
Original entry on oeis.org
1, 1, 2, 3, 5, 7, 12, 18, 31, 51, 86, 143, 241, 397, 657, 1082, 1771, 2889, 4697, 7605, 12269, 19720, 31580, 50412, 80205, 127208, 201149, 317171, 498717, 782076, 1223230, 1908381, 2969950, 4610949, 7141972, 11037276, 17019617, 26188490, 40213388, 61624824
Offset: 0
The a(0) = 1 through a(7) = 18 compositions:
() (1) (2) (3) (4) (5) (6) (7)
(11) (21) (22) (32) (33) (43)
(111) (31) (41) (42) (52)
(211) (221) (51) (61)
(1111) (311) (222) (322)
(2111) (312) (331)
(11111) (321) (412)
(411) (421)
(2211) (511)
(3111) (2221)
(21111) (3112)
(111111) (3121)
(3211)
(4111)
(22111)
(31111)
(211111)
(1111111)
Ranked by positions of strictly decreasing rows in
A374740, opp.
A374629.
Types of runs (instead of weakly decreasing):
- For leaders of identical runs we have
A000041.
- For leaders of weakly increasing runs we have
A188920.
- For leaders of anti-runs we have
A374680.
- For leaders of strictly increasing runs we have
A374689.
- For leaders of strictly decreasing runs we have
A374763.
Types of run-leaders (instead of strictly decreasing):
- For weakly increasing leaders we appear to have
A188900.
- For identical leaders we have
A374742.
- For strictly increasing leaders we have opposite
A374634.
- For weakly decreasing leaders we have
A374747.
A335456 counts patterns matched by compositions.
A374748 counts compositions by sum of leaders of weakly decreasing runs.
Cf.
A000009,
A003242,
A106356,
A189076,
A238343,
A261982,
A333213,
A358836,
A374632,
A374635,
A374741.
-
Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n],Greater@@First/@Split[#,GreaterEqual]&]],{n,0,15}]
-
seq(n)={my(A=O(x*x^n), p=1+A, q=p, r=p); for(k=1, n\2, r += x^k*q/(1-x^k); p /= 1 - x^k; q *= (1 - x^k/(1-x^k) + x^k*p)/(1-x^k) ); Vec(r + x^(n\2+1)*q/(1-x))} \\ Andrew Howroyd, Dec 30 2024
A374747
Number of integer compositions of n whose leaders of weakly decreasing runs are themselves weakly decreasing.
Original entry on oeis.org
1, 1, 2, 3, 5, 8, 14, 24, 43, 76, 136, 242, 431, 764, 1353, 2387, 4202, 7376, 12918, 22567, 39338, 68421, 118765, 205743, 355756, 614038, 1058023, 1820029, 3125916, 5360659, 9179700, 15697559, 26807303, 45720739, 77881393, 132505599, 225182047, 382252310, 648187055
Offset: 0
The composition y = (3,2,1,2,2,1,2,5,1,1,1) has weakly decreasing runs ((3,2,1),(2,2,1),(2),(5,1,1,1)), with leaders (3,2,2,5), which are not weakly decreasing, so y is not counted under a(21).
The a(0) = 1 through a(6) = 14 compositions:
() (1) (2) (3) (4) (5) (6)
(11) (21) (22) (32) (33)
(111) (31) (41) (42)
(211) (212) (51)
(1111) (221) (222)
(311) (312)
(2111) (321)
(11111) (411)
(2112)
(2121)
(2211)
(3111)
(21111)
(111111)
Ranked by positions of weakly decreasing rows in
A374740, opposite
A374629.
Types of runs (instead of weakly decreasing):
- For leaders of identical runs we have
A000041.
- For leaders of weakly increasing runs we appear to have
A189076.
- For leaders of anti-runs we have
A374682.
- For leaders of strictly increasing runs we have
A374697.
- For leaders of strictly decreasing runs we have
A374765.
Types of run-leaders (instead of weakly decreasing):
- For weakly increasing leaders we appear to have
A188900.
- For strictly increasing leaders we have opposite
A374634.
- For strictly decreasing leaders we have
A374746.
A124765 counts weakly decreasing runs in standard compositions.
A335456 counts patterns matched by compositions.
A374748 counts compositions by sum of leaders of weakly decreasing runs.
Cf.
A000009,
A003242,
A106356,
A188920,
A238343,
A261982,
A333213,
A374630,
A374635,
A374636,
A374741.
-
Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n],GreaterEqual@@First/@Split[#,GreaterEqual]&]],{n,0,15}]
-
dfs(m, r, u) = 1 + sum(s=r+1, min(m, u), x^s/(1-x^s) + sum(t=1, min(s-1, m-s), dfs(m-s-t, t, s)*x^(s+t)/prod(i=t, s, 1-x^i)));
lista(nn) = Vec(dfs(nn, 0, nn) + O(x^(1+nn))); \\ Jinyuan Wang, Feb 14 2025
A374762
Number of integer compositions of n whose leaders of strictly decreasing runs are strictly increasing.
Original entry on oeis.org
1, 1, 1, 3, 4, 6, 11, 18, 27, 41, 64, 98, 151, 229, 339, 504, 746, 1097, 1618, 2372, 3451, 5009, 7233, 10394, 14905, 21316, 30396, 43246, 61369, 86830, 122529, 172457, 242092, 339062, 473850, 660829, 919822, 1277935, 1772174, 2453151, 3389762, 4675660, 6438248
Offset: 0
The a(0) = 1 through a(7) = 18 compositions:
() (1) (2) (3) (4) (5) (6) (7)
(12) (13) (14) (15) (16)
(21) (31) (23) (24) (25)
(121) (32) (42) (34)
(41) (51) (43)
(131) (123) (52)
(132) (61)
(141) (124)
(213) (142)
(231) (151)
(321) (214)
(232)
(241)
(421)
(1213)
(1231)
(1321)
(2131)
For partitions instead of compositions we have
A000009.
The weak version appears to be
A188900.
Other types of runs (instead of strictly decreasing):
- For leaders of identical runs we have
A000041.
- For leaders of weakly increasing runs we have
A374634.
- For leaders of anti-runs we have
A374679.
Other types of run-leaders (instead of strictly increasing):
- For strictly decreasing leaders we have
A374763.
- For weakly increasing leaders we have
A374764.
- For weakly decreasing leaders we have
A374765.
A374700 counts compositions by sum of leaders of strictly increasing runs.
Cf.
A106356,
A188920,
A189076,
A238343,
A261982,
A333213,
A374518,
A374631,
A374632,
A374687,
A374742,
A374743.
-
Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n],Less@@First/@Split[#,Greater]&]],{n,0,15}]
-
seq(n) = Vec(prod(k=1, n, 1 + x^k*prod(j=1, min(n-k,k-1), 1 + x^j, 1 + O(x^(n-k+1))))) \\ Andrew Howroyd, Jul 31 2024
A375137
Numbers k such that the k-th composition in standard order (row k of A066099) matches the dashed pattern 1-32.
Original entry on oeis.org
50, 98, 101, 114, 178, 194, 196, 197, 202, 203, 210, 226, 229, 242, 306, 324, 354, 357, 370, 386, 388, 389, 393, 394, 395, 402, 404, 405, 406, 407, 418, 421, 434, 450, 452, 453, 458, 459, 466, 482, 485, 498, 562, 610, 613, 626, 644, 649, 690, 706, 708, 709
Offset: 1
Composition 102 is (1,3,1,2), which matches 1-3-2 but not 1-32.
Composition 210 is (1,2,3,2), which matches 1-32 but not 132.
Composition 358 is (2,1,3,1,2), which matches 2-3-1 and 1-3-2 but not 23-1 or 1-32.
The terms together with corresponding compositions begin:
50: (1,3,2)
98: (1,4,2)
101: (1,3,2,1)
114: (1,1,3,2)
178: (2,1,3,2)
194: (1,5,2)
196: (1,4,3)
197: (1,4,2,1)
202: (1,3,2,2)
203: (1,3,2,1,1)
210: (1,2,3,2)
226: (1,1,4,2)
229: (1,1,3,2,1)
242: (1,1,1,3,2)
The complement is too dense, but counted by
A189076.
Compositions of this type are counted by
A374636.
For leaders of strictly increasing runs we have
A375139, counted by
A375135.
All of the following pertain to compositions in standard order:
- Constant compositions are
A272919.
Cf.
A056823,
A106356,
A188919,
A238343,
A333213,
A373948,
A373953,
A374634,
A374635,
A374637,
A375123,
A375296.
-
stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
Select[Range[0,100],MatchQ[stc[#],{_,x_,_,z_,y_,_}/;x
A374640
Number of integer compositions of n whose leaders of maximal anti-runs are not identical.
Original entry on oeis.org
0, 0, 0, 0, 1, 3, 7, 18, 43, 96, 211, 463, 992, 2112, 4462, 9347, 19495, 40480, 83690, 172478, 354455, 726538, 1486024, 3033644, 6182389, 12580486
Offset: 0
The a(0) = 0 through a(7) = 18 compositions:
. . . . (211) (122) (411) (133)
(311) (1122) (322)
(2111) (1221) (511)
(2112) (1222)
(2211) (2113)
(3111) (2311)
(21111) (3112)
(3211)
(4111)
(11122)
(11221)
(12211)
(21112)
(21121)
(21211)
(22111)
(31111)
(211111)
For partitions instead of compositions we have
A239955.
A065120 gives leaders of standard compositions.
A106356 counts compositions by number of maximal anti-runs.
A238279 counts compositions by number of maximal runs
-
Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n],!SameQ@@First/@Split[#,UnsameQ]&]],{n,0,15}]
A374690
Number of integer compositions of n whose leaders of strictly increasing runs are weakly increasing.
Original entry on oeis.org
1, 1, 2, 3, 6, 10, 19, 34, 63, 115, 211, 387, 710, 1302, 2385, 4372, 8009, 14671, 26867, 49196, 90069, 164884, 301812, 552406, 1011004, 1850209, 3385861, 6195832, 11337470, 20745337, 37959030, 69454669, 127081111, 232517129, 425426211, 778376479, 1424137721
Offset: 0
The composition (1,1,3,2,3,2) has strictly increasing runs ((1),(1,3),(2,3),(2)), with leaders (1,1,2,2), so is counted under a(12).
The a(0) = 1 through a(6) = 19 compositions:
() (1) (2) (3) (4) (5) (6)
(11) (12) (13) (14) (15)
(111) (22) (23) (24)
(112) (113) (33)
(121) (122) (114)
(1111) (131) (123)
(1112) (132)
(1121) (141)
(1211) (222)
(11111) (1113)
(1122)
(1131)
(1212)
(1311)
(11112)
(11121)
(11211)
(12111)
(111111)
Ranked by positions of weakly increasing rows in
A374683.
Types of runs (instead of strictly increasing):
- For leaders of identical runs we have
A000041.
- For leaders of anti-runs we have
A374681.
- For leaders of weakly increasing runs we have
A374635.
- For leaders of weakly decreasing runs we have
A188900.
- For leaders of strictly decreasing runs we have
A374764.
Types of run-leaders (instead of weakly increasing):
- For strictly increasing leaders we have
A374688.
- For strictly decreasing leaders we have
A374689.
- For weakly decreasing leaders we have
A374697.
A335456 counts patterns matched by compositions.
A374700 counts compositions by sum of leaders of strictly increasing runs.
Cf.
A000009,
A106356,
A188920,
A189076,
A238343,
A261982,
A333213,
A374629,
A374630,
A374632,
A374679.
-
Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n],LessEqual@@First/@Split[#,Less]&]],{n,0,15}]
A374765
Number of integer compositions of n whose leaders of strictly decreasing runs are weakly decreasing.
Original entry on oeis.org
1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 88, 141, 225, 357, 565, 891, 1399, 2191, 3420, 5321, 8256, 12774, 19711, 30339, 46584, 71359, 109066, 166340, 253163, 384539, 582972, 882166, 1332538, 2009377, 3024969, 4546562, 6822926, 10223632, 15297051, 22855872, 34103117
Offset: 0
The composition (3,1,2,2,1) has strictly decreasing runs ((3,1),(2),(2,1)), with leaders (3,2,2), so is counted under a(9).
The a(0) = 1 through a(6) = 13 compositions:
() (1) (2) (3) (4) (5) (6)
(11) (21) (22) (32) (33)
(111) (31) (41) (42)
(211) (212) (51)
(1111) (221) (222)
(311) (312)
(2111) (321)
(11111) (411)
(2121)
(2211)
(3111)
(21111)
(111111)
Other types of runs (instead of strictly decreasing):
- For leaders of identical runs we have
A000041.
- For leaders of weakly increasing runs we appear to have
A189076.
- For leaders of anti-runs we have
A374682.
- For leaders of strictly increasing runs we have
A374697.
- For leaders of weakly decreasing runs we have
A374747.
Other types of run-leaders (instead of weakly decreasing):
- For strictly increasing leaders we have
A374762.
- For strictly decreasing leaders we have
A374763.
- For weakly increasing leaders we have
A374764.
Cf.
A106356,
A188900,
A188920,
A238343,
A261982,
A333213,
A374635,
A374636,
A374689,
A374742,
A374743,
A375133.
-
Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n],GreaterEqual@@First/@Split[#,Greater]&]],{n,0,15}]
-
dfs(m, r, u) = 1 + sum(s=r, min(m, u), dfs(m-s, s, s)*x^s + sum(t=1, min(s-1, m-s), dfs(m-s-t, t, s)*x^(s+t)*prod(i=t+1, s-1, 1+x^i)));
lista(nn) = Vec(dfs(nn, 1, nn) + O(x^(1+nn))); \\ Jinyuan Wang, Feb 13 2025
A374704
Number of ways to choose an integer partition of each part of an integer composition of n (A055887) such that the minima are identical.
Original entry on oeis.org
1, 1, 3, 6, 15, 31, 77, 171, 410, 957, 2275, 5370, 12795, 30366, 72307, 172071, 409875, 976155, 2325804, 5541230, 13204161, 31464226, 74980838, 178684715, 425830008, 1014816979, 2418489344, 5763712776, 13736075563, 32735874251, 78016456122, 185929792353, 443110675075
Offset: 0
The a(0) = 1 through a(4) = 15 ways:
() ((1)) ((2)) ((3)) ((4))
((1,1)) ((1,2)) ((1,3))
((1),(1)) ((1,1,1)) ((2,2))
((1),(1,1)) ((1,1,2))
((1,1),(1)) ((2),(2))
((1),(1),(1)) ((1,1,1,1))
((1),(1,2))
((1,2),(1))
((1),(1,1,1))
((1,1),(1,1))
((1,1,1),(1))
((1),(1),(1,1))
((1),(1,1),(1))
((1,1),(1),(1))
((1),(1),(1),(1))
A variation for weakly increasing lengths is
A141199.
For identical sums instead of minima we have
A279787.
For maxima instead of minima, or for unreversed partitions, we have
A358905.
A055887 counts sequences of partitions with total sum n.
Cf.
A000041,
A063834,
A106356,
A189076,
A238343,
A304969,
A305551,
A319066,
A323429,
A333213,
A358833,
A358835.
-
Table[Length[Select[Join@@Table[Tuples[IntegerPartitions/@y], {y,Join@@Permutations/@IntegerPartitions[n]}],SameQ@@Min/@#&]],{n,0,15}]
-
seq(n) = Vec(1 + sum(k=1, n, -1 + 1/(1 - x^k/prod(j=k, n-k, 1 - x^j, 1 + O(x^(n-k+1)))))) \\ Andrew Howroyd, Dec 29 2024
A375138
Numbers k such that the k-th composition in standard order (row k of A066099) matches the dashed pattern 23-1.
Original entry on oeis.org
41, 81, 83, 105, 145, 161, 163, 165, 166, 167, 169, 209, 211, 233, 289, 290, 291, 297, 321, 323, 325, 326, 327, 329, 331, 332, 333, 334, 335, 337, 339, 361, 401, 417, 419, 421, 422, 423, 425, 465, 467, 489, 545, 553, 577, 578, 579, 581, 582, 583, 593, 595, 617
Offset: 1
Composition 89 is (2,1,3,1), which matches 2-3-1 but not 23-1.
Composition 165 is (2,3,2,1), which matches 23-1 but not 231.
Composition 358 is (2,1,3,1,2), which matches 2-3-1 and 1-3-2 but not 23-1 or 1-32.
The sequence together with corresponding compositions begins:
41: (2,3,1)
81: (2,4,1)
83: (2,3,1,1)
105: (1,2,3,1)
145: (3,4,1)
161: (2,5,1)
163: (2,4,1,1)
165: (2,3,2,1)
166: (2,3,1,2)
167: (2,3,1,1,1)
169: (2,2,3,1)
209: (1,2,4,1)
211: (1,2,3,1,1)
233: (1,1,2,3,1)
The complement is too dense, but counted by
A189076.
Compositions of this type are counted by
A374636.
All of the following pertain to compositions in standard order:
- Constant compositions are
A272919.
Cf.
A056823,
A106356,
A188919,
A238343,
A333213,
A335466,
A373948,
A373953,
A374633,
A375123,
A375139,
A374768.
-
stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
Select[Range[0,100],MatchQ[stc[#],{_,y_,z_,_,x_,_}/;x
A375135
Number of integer compositions of n whose leaders of maximal strictly increasing runs are not weakly decreasing.
Original entry on oeis.org
0, 0, 0, 0, 0, 1, 3, 9, 25, 63, 152, 355, 809, 1804, 3963, 8590, 18423, 39161, 82620, 173198, 361101, 749326, 1548609, 3189132, 6547190, 13404613, 27378579, 55801506, 113517749, 230544752, 467519136, 946815630, 1915199736, 3869892105, 7812086380, 15756526347
Offset: 0
The composition y = (1,2,1,3,2,3) has strictly increasing runs ((1,2),(1,3),(2,3)), with leaders (1,1,2), which are not weakly decreasing, so y is counted under a(12).
The a(0) = 0 through a(8) = 25 compositions:
. . . . . (122) (132) (133) (143)
(1122) (142) (152)
(1221) (1132) (233)
(1222) (1133)
(1321) (1142)
(2122) (1223)
(11122) (1232)
(11221) (1322)
(12211) (1331)
(1421)
(2132)
(3122)
(11132)
(11222)
(11321)
(12122)
(12212)
(12221)
(13211)
(21122)
(21221)
(111122)
(111221)
(112211)
(122111)
For leaders of constant runs we have
A056823.
For leaders of weakly increasing runs we have
A374636, complement
A189076?
The complement is counted by
A374697.
A335456 counts patterns matched by compositions.
A374700 counts compositions by sum of leaders of strictly increasing runs.
-
Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n], !GreaterEqual@@First/@Split[#,Less]&]],{n,0,15}]
Comments