cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A208039 T(n,k)=Number of nXk 0..1 arrays avoiding 0 0 0 and 0 1 0 horizontally and 0 0 0 and 1 0 1 vertically.

Original entry on oeis.org

2, 4, 4, 6, 16, 6, 9, 36, 36, 9, 15, 81, 102, 81, 13, 25, 225, 289, 279, 169, 19, 40, 625, 1071, 961, 741, 361, 28, 64, 1600, 3969, 4743, 3249, 1995, 784, 41, 104, 4096, 13230, 23409, 21147, 11025, 5404, 1681, 60, 169, 10816, 44100, 100215, 137641, 94605
Offset: 1

Views

Author

R. H. Hardin Feb 22 2012

Keywords

Comments

Table starts
..2....4.....6......9......15.......25........40.........64.........104
..4...16....36.....81.....225......625......1600.......4096.......10816
..6...36...102....289....1071.....3969.....13230......44100......153090
..9...81...279....961....4743....23409....100215.....429025.....1942075
.13..169...741...3249...21147...137641....766115....4264225....25232235
.19..361..1995..11025...94605...811801...5866411...42393121...327288437
.28..784..5404..37249..422477..4791721..44918280..421070400..4242161160
.41.1681.14555.126025.1889665.28334329.344414069.4186478209.55078752265

Examples

			Some solutions for n=4 k=3
..0..1..1....0..1..1....1..0..0....1..1..0....1..1..1....1..1..0....1..1..0
..1..0..0....1..1..1....0..0..1....1..0..1....1..1..1....0..1..1....1..0..1
..1..0..0....1..0..1....0..1..1....1..0..0....1..1..1....0..0..1....0..0..1
..0..1..1....0..0..1....1..1..1....1..1..0....1..1..1....1..0..1....0..1..1
		

Crossrefs

Column 1 is A000930(n+3)
Column 2 is A207170
Column 3 is A208023
Column 4 is A141583(n+3) for n>1
Row 1 is A006498(n+2)
Row 2 is A189145(n+2)
Row 3 is A207704

A208078 T(n,k)=Number of nXk 0..1 arrays avoiding 0 0 0 and 0 0 1 horizontally and 0 0 0 and 0 1 0 vertically.

Original entry on oeis.org

2, 4, 4, 6, 16, 6, 10, 36, 36, 9, 16, 100, 126, 81, 15, 26, 256, 510, 441, 225, 25, 42, 676, 1968, 2601, 1785, 625, 40, 68, 1764, 7722, 15129, 16065, 7225, 1600, 64, 110, 4624, 30114, 88209, 139605, 99225, 27880, 4096, 104, 178, 12100, 117708, 514089, 1228095
Offset: 1

Views

Author

R. H. Hardin, Feb 23 2012

Keywords

Examples

			Table starts
..2....4......6......10.......16.........26..........42............68
..4...16.....36.....100......256........676........1764..........4624
..6...36....126.....510.....1968.......7722.......30114........117708
..9...81....441....2601....15129......88209......514089.......2996361
.15..225...1785...16065...139605....1228095....10751415......94313535
.25..625...7225...99225..1288225...17098225...224850025....2968615225
.40.1600..27880..572040.11204720..223058440..4412968520...87523832240
.64.4096.107584.3297856.97456384.2909955136.86610135616.2580469555456
...
Some solutions for n=4 k=3
..0..1..0....0..1..1....1..0..0....0..1..0....1..0..0....1..1..1....0..1..1
..1..0..1....1..1..0....1..1..0....0..1..1....0..1..1....1..0..1....1..1..0
..1..0..1....1..0..1....1..1..1....1..1..1....0..1..1....1..1..1....1..1..0
..0..1..1....0..1..1....1..1..1....1..0..0....1..1..1....0..1..1....0..1..1
		

Crossrefs

Column 1 is A006498(n+2)
Column 2 is A189145(n+2)
Column 3 is A202399(n-2)
Row 1 is A006355(n+2)
Row 2 is A206981
Row 3 is A202954(n-2)

A208118 T(n,k)=Number of nXk 0..1 arrays avoiding 0 0 0 and 0 1 0 horizontally and 0 0 1 and 0 1 1 vertically.

Original entry on oeis.org

2, 4, 4, 6, 16, 6, 9, 36, 36, 9, 15, 81, 90, 81, 12, 25, 225, 225, 225, 144, 16, 40, 625, 825, 625, 420, 256, 20, 64, 1600, 3025, 3025, 1225, 784, 400, 25, 104, 4096, 9240, 14641, 7315, 2401, 1260, 625, 30, 169, 10816, 28224, 53361, 43681, 17689, 3969, 2025, 900
Offset: 1

Views

Author

R. H. Hardin Feb 23 2012

Keywords

Comments

Table starts
..2...4....6....9....15.....25......40.......64.......104........169........273
..4..16...36...81...225....625....1600.....4096.....10816......28561......74529
..6..36...90..225...825...3025....9240....28224.....93912.....312481.....997815
..9..81..225..625..3025..14641...53361...194481....815409....3418801...13359025
.12.144..420.1225..7315..43681..175560...705600...3503640...17397241...76934095
.16.256..784.2401.17689.130321..577600..2560000..15054400...88529281..443060401
.20.400.1260.3969.34713.303601.1432600..6760000..45648200..308248249.1680152229
.25.625.2025.6561.68121.707281.3553225.17850625.138415225.1073283121.6371392041

Examples

			Some solutions for n=4 k=3
..1..1..1....0..1..1....0..0..1....0..0..1....1..1..0....1..0..1....1..1..1
..1..1..1....1..0..1....1..0..1....0..0..1....0..0..1....1..0..1....1..1..1
..0..1..1....0..1..1....0..0..1....0..0..1....1..1..0....1..0..1....1..1..1
..0..1..1....1..0..1....0..0..1....0..0..1....0..0..1....0..0..1....1..0..1
		

Crossrefs

Column 1 is A002620(n+2)
Column 2 is A030179(n+2)
Column 3 is A207363
Row 1 is A006498(n+2)
Row 2 is A189145(n+2)
Row 3 is A207600

A209224 T(n,k)=Number of nXk 0..1 arrays avoiding 0 0 0 and 0 1 0 horizontally and 0 1 0 and 1 1 1 vertically.

Original entry on oeis.org

2, 4, 4, 6, 16, 6, 9, 36, 36, 9, 15, 81, 60, 81, 13, 25, 225, 100, 126, 169, 19, 40, 625, 240, 196, 234, 361, 28, 64, 1600, 576, 504, 324, 456, 784, 41, 104, 4096, 1296, 1296, 900, 576, 896, 1681, 60, 169, 10816, 2916, 3312, 2500, 1776, 1024, 1722, 3600, 88, 273
Offset: 1

Views

Author

R. H. Hardin Mar 06 2012

Keywords

Comments

Table starts
..2....4....6....9...15....25....40.....64.....104.....169......273......441
..4...16...36...81..225...625..1600...4096...10816...28561....74529...194481
..6...36...60..100..240...576..1296...2916....6804...15876....36288....82944
..9...81..126..196..504..1296..3312...8464...21712...55696...142544...364816
.13..169..234..324..900..2500..6900..19044...52992..147456...407808..1127844
.19..361..456..576.1776..5476.15984..46656..143856..443556..1312020..3880900
.28..784..896.1024.3456.11664.38232.125316..423384.1430416..4755296.15808576
.41.1681.1722.1764.6300.22500.80400.287296.1037696.3748096.13540384.48916036

Examples

			Some solutions for n=4 k=3
..1..0..1....1..0..1....0..1..1....0..1..1....1..1..0....0..1..1....1..0..0
..0..1..1....0..0..1....0..1..1....1..1..0....1..1..1....0..0..1....0..0..1
..1..1..0....1..1..0....1..0..0....1..0..0....0..0..1....1..0..0....1..0..1
..1..0..1....1..1..1....1..0..1....0..1..1....1..1..0....1..1..0....1..1..0
		

Crossrefs

Column 1 is A000930(n+3)
Column 2 is A207170
Column 3 is A208496
Row 1 is A006498(n+2)
Row 2 is A189145(n+2)
Row 3 is A207694

A264195 T(n,k)=Number of (n+1)X(k+1) arrays of permutations of 0..(n+1)*(k+1)-1 with each element having index change +-(.,.) 0,0 0,2 or 2,1.

Original entry on oeis.org

1, 4, 2, 16, 18, 4, 36, 180, 81, 8, 81, 864, 2025, 360, 16, 225, 4608, 20736, 19845, 1600, 32, 625, 29040, 262144, 395280, 194481, 6760, 64, 1600, 184525, 3748096, 10764800, 7535025, 1944810, 28561, 128, 4096, 1089000, 54479161, 324210304, 442050625
Offset: 1

Views

Author

R. H. Hardin, Nov 07 2015

Keywords

Comments

Table starts
..1.....4.......16.........36...........81.............225.............625
..2....18......180........864.........4608...........29040..........184525
..4....81.....2025......20736.......262144.........3748096........54479161
..8...360....19845.....395280.....10764800.......324210304......9863496016
.16..1600...194481....7535025....442050625.....28044191296...1785793904896
.32..6760..1944810..150305220..19169627850...2585148634024.357076938417216
.64.28561.19448100.2998219536.831295356516.238302234835681

Examples

			Some solutions for n=3 k=4
..2..1.13..3..4...11..1.13..3..4...11..1.13.14..4....0.12..2.14..4
..5.17..7..6..9....5..6..9.19..7....5..6..9.19..7....7..6..5..8..9
.10..0.14.11.12...10..0.14..2.12...12..0.10..2..3...10.13..1.11..3
.15.16.19.18..8...15.18.17.16..8...15.16.17.18..8...17.18.15.16.19
		

Crossrefs

Column 1 is A000079(n-1).
Row 1 is A189145(n+1).

Formula

Empirical for column k:
k=1: a(n) = 2*a(n-1)
k=2: [order 14]
k=3: a(n) = 10*a(n-1) for n>5
k=4: [order 14] for n>16
k=5: [order 58]
Empirical for row n:
n=1: a(n) = 3*a(n-1) -3*a(n-2) +6*a(n-3) -6*a(n-5) +3*a(n-6) -3*a(n-7) +a(n-8)
n=2: [order 44]
n=3: [order 30]

A197424 Number of subsets of {1, 2, ..., 4*n + 2} which do not contain two numbers whose difference is 4.

Original entry on oeis.org

4, 36, 225, 1600, 10816, 74529, 509796, 3496900, 23961025, 164249856, 1125736704, 7716041281, 52886200900, 362488284900, 2484529385121, 17029223715904, 116720020119616, 800010960336225, 5483356589096100, 37583485459535236, 257601040852192129
Offset: 0

Views

Author

John W. Layman, Oct 14 2011

Keywords

Comments

This sequence is an instance of a general result given in Math. Mag. Problem 1854 (see Links).
From Feryal Alayont, May 20 2023: (Start)
a(n) is the number of edge covers of a caterpillar graph with spine P_(4n+5), one pendant attached at vertex n+2 counting from the left end of the spine, a second one at 2n+3 and a third at 3n+4. The caterpillar graph for n=1 is as follows:
* * *
| | |
*--*--*--v1--*--v2--*--*--*
Each pendant edge must be included in an edge cover leaving only the middle six edges flexible. Every vertex except v1 and v2 is incident with at least one of the pendant edges. Therefore, if we label the middle six edges in the spine with numbers 3, 1, 5, 2, 6, 4 (starting from the left), the edges have to be chosen so that both 1,5 and 2,6 cannot be missing. This corresponds to choosing subsets of {1, 2, ..., 6} which do not contain two numbers whose difference is 4. (End)

References

  • F. Alayont and E. Henning, Edge Covers of Caterpillars, Cycles with Pendants, and Spider Graphs; submitted.

Crossrefs

Programs

  • Mathematica
    Table[(1/25) (LucasL[2 (2 n + 5)] - 2 (-1)^n LucasL[2 n + 5] - 1), {n, 0, 20}] (* Michael De Vlieger, Mar 27 2016 *)
  • PARI
    Vec((4+16*x-15*x^2-5*x^3+x^4) / ((1-x)*(1-7*x+x^2)*(1+3*x+x^2)) + O(x^30)) \\ Colin Barker, Mar 26 2016
    
  • PARI
    a(n) = (fibonacci(n+2)*fibonacci(n+3))^2; \\ Altug Alkan, Mar 26 2016

Formula

a(n) = F(n+2)^2*F(n+3)^2 = A001654(n+2)^2, where F(n) denotes the n-th Fibonacci number A000045(n).
G.f.: ( -4-16*x+15*x^2+5*x^3-x^4 ) / ( (x-1)*(x^2+3*x+1)*(x^2-7*x+1) ). - R. J. Mathar, Oct 15 2011
Empirical: a(n) = A189145(2n+3). - R. J. Mathar, Oct 15 2011
For L=Lucas, a(n) = (1/25)*(L(2*(2*n+5)) - 2*(-1)^n*L(2*n+5) - 1), an instance of (F(n+p)*F(n+q))^2 = (1/25)*(L(2*(2*n+p+q)) - 2*(-1)^(n+q)*L(p-q)*L(2*n+p+q) + L(2*(p-q)) + 4*(-1)^(p-q)) which follows from squaring a specialization of identity 17b in the Vajda reference at A000045, F(n+p)*F(n+q) = (1/5)*(L(2*n+p+q) - (-1)*(n+q)*L(p-q)), then applying Vajda 17c, L(n)^2 = L(2*n) + 2*(-1)^n, to the expansion. - Ehren Metcalfe, Mar 26 2016
a(n) = A060635(n+2)/2. - Alois P. Heinz, Jul 03 2025

A201222 Number of ways to place k non-attacking knights on a 2 X n horizontal cylinder, summed over all k>=0.

Original entry on oeis.org

3, 9, 18, 81, 123, 324, 843, 2401, 5778, 15129, 39603, 104976, 271443, 710649, 1860498, 4879681, 12752043, 33385284, 87403803, 228886641, 599074578, 1568397609, 4106118243, 10750371856, 28143753123, 73681302249, 192900153618, 505022001201, 1322157322203
Offset: 1

Views

Author

Vaclav Kotesovec, Nov 28 2011

Keywords

Crossrefs

Programs

  • Mathematica
    Table[If[Mod[n,4]==0,LucasL[n/2]^4,LucasL[2n]+1+(-1)^n],{n,1,50}]

A321251 a(n) is the number of ways to place non-attacking knights on a 3 X n chessboard.

Original entry on oeis.org

1, 8, 36, 94, 278, 1062, 3650, 11856, 39444, 135704, 456980, 1534668, 5166204, 17480600, 58888528, 198548648, 669291696, 2258436248, 7613387344, 25676313144, 86575342536, 291991130840, 984557555352, 3320284572360, 11196209499736, 37757232570616
Offset: 0

Views

Author

Dimitrios Noulas, Nov 01 2018

Keywords

Comments

For n = 3, a(3) = 94 is the same as A141243(3). In both cases these are 3 X 3 chessboards.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[-(36 x^15 - 72 x^14 - 60 x^13 + 72 x^12 - 120 x^11 + 250 x^10 + 270 x^9 - 256 x^8 - 30 x^7 - 78 x^6 - 98 x^5 + 92 x^4 + 36 x^3 - 8 x^2 - 5 x - 1)/(36 x^16 - 108 x^15 + 48 x^14 + 24 x^13 - 144 x^12 + 376 x^11 - 70 x^10 - 174 x^9 + 108 x^8 - 168 x^7 + 26 x^6 + 78 x^5 - 24 x^4 + 10 x^3 - 4 x^2 - 3 x + 1), {x, 0, 25}], x] (* Michael De Vlieger, Nov 05 2018 *)
  • Sage
    G(x)=-(36*x^15 - 72*x^14 - 60*x^13 + 72*x^12 - 120*x^11 + 250*x^10 + 270*x^9 - 256*x^8 - 30*x^7 - 78*x^6 - 98*x^5 + 92*x^4 + 36*x^3 - 8*x^2 - 5*x - 1)/(36*x^16 - 108*x^15 + 48*x^14 + 24*x^13 - 144*x^12 + 376*x^11 - 70*x^10 - 174*x^9 + 108*x^8 - 168*x^7 + 26*x^6 + 78*x^5 - 24*x^4 + 10*x^3 - 4*x^2 - 3*x + 1)
    G.series(x,1001)

Formula

G.f.: -(36*x^15 - 72*x^14 - 60*x^13 + 72*x^12 - 120*x^11 + 250*x^10 + 270*x^9 - 256*x^8 - 30*x^7 - 78*x^6 - 98*x^5 + 92*x^4 + 36*x^3 - 8*x^2 - 5*x - 1)/(36*x^16 - 108*x^15 + 48*x^14 + 24*x^13 - 144*x^12 + 376*x^11 - 70*x^10 - 174*x^9 + 108*x^8 - 168*x^7 + 26*x^6 + 78*x^5 - 24*x^4 + 10*x^3 - 4*x^2 - 3*x + 1).
Previous Showing 11-18 of 18 results.