cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A350256 Triangle read by rows. T(n, k) = BellPolynomial(n, k).

Original entry on oeis.org

1, 0, 1, 0, 2, 6, 0, 5, 22, 57, 0, 15, 94, 309, 756, 0, 52, 454, 1866, 5428, 12880, 0, 203, 2430, 12351, 42356, 115155, 268098, 0, 877, 14214, 88563, 355636, 1101705, 2869242, 6593839, 0, 4140, 89918, 681870, 3188340, 11202680, 32510850, 82187658, 187104200
Offset: 0

Views

Author

Peter Luschny, Dec 22 2021

Keywords

Examples

			Triangle begins:
[0] 1
[1] 0,    1
[2] 0,    2,     6
[3] 0,    5,    22,     57
[4] 0,   15,    94,    309,     756
[5] 0,   52,   454,   1866,    5428,    12880
[6] 0,  203,  2430,  12351,   42356,   115155,   268098
[7] 0,  877, 14214,  88563,  355636,  1101705,  2869242,  6593839
[8] 0, 4140, 89918, 681870, 3188340, 11202680, 32510850, 82187658, 187104200
		

Crossrefs

Cf. A242817 (main diagonal), A000110 (column 1), A350264 (row sums), A350263 (Bell(n,-k)), A189233 and A292860 (array).

Programs

  • Maple
    A350256 := (n, k) -> ifelse(n = 0, 1, BellB(n, k)):
    seq(seq(A350256(n, k), k = 0..n), n = 0..8);
  • Mathematica
    T[n_, k_] := BellB[n, k]; Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten

A299824 a(n) = (1/e^n)*Sum_{j >= 1} j^n * n^j / (j-1)!.

Original entry on oeis.org

2, 22, 309, 5428, 115155, 2869242, 82187658, 2661876168, 96202473183, 3838516103310, 167606767714397, 7949901069639228, 407048805012563038, 22376916254447538882, 1314573505901491675965, 82188946843192555474704, 5448870914168179374456623, 381819805747937892412056342
Offset: 1

Views

Author

Pedro Caceres, Feb 19 2018

Keywords

Comments

For m>1, A242817(m) and a(m-1) are also the m-th and (m+1)-st terms of the sequences "Number of ways of placing X labeled balls into X unlabeled (but (m-1)-colored) boxes". For instance, sequence A144180 for 5-colored boxes (m = 6), has A144180(6) = 12880, and A144180(7) = 115155, which are A242817(6) and a(5) respectively. Same pattern can be observed for A027710, A144223, A144263 (comment added after Omar E. Pol's formula).

Examples

			a(4) = (1/e^4)*Sum_{j >= 1} j^4 * 4^j / (j-1)! = 5428.
		

Crossrefs

Programs

  • PARI
    a(n) = round(exp(-n)*suminf(j = 1, (j^n)*(n^j)/(j-1)!)); \\ Michel Marcus, Feb 24 2018
    
  • PARI
    A299824(n,f=exp(n),S=n/f,t)=for(j=2,oo,S+=(t=j^n*n^j)/(f*=j-1);tn&&return(ceil(S))) \\ For n > 23, use \p## with some ## >= 2n. - M. F. Hasler, Mar 09 2018

Formula

a(n) = A189233(n+1,n). - Omar E. Pol, Feb 24 2018
a(n) ~ exp(n/LambertW(1) - 2*n) * n^(n + 1) / (sqrt(1 + LambertW(1)) * LambertW(1)^(n + 1)). - Vaclav Kotesovec, Mar 08 2018
Or: a(n) ~ (1/sqrt(1+w)) * exp(1/w-2)^n * (n/w)^(n+1), with w = LambertW(1) ~ 0.56714329... The relative error decreases from 10^-2 for a(2) to 10^-3 for a(15), but reaches 10^-3.5 only at a(45). - M. F. Hasler, Mar 09 2018

A346654 a(n) = Bell(2*n,n).

Original entry on oeis.org

1, 2, 94, 12351, 3188340, 1362057155, 869725707522, 775929767223352, 921839901090823112, 1406921223577401454239, 2682502220690005671884710, 6248503930824315386034050253, 17460431497766377837983159782652, 57647207262184459310081410522242310, 222006095854149044448961838142906736554
Offset: 0

Views

Author

Vaclav Kotesovec, Jul 27 2021

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(n=0, 1,
          (1+add(binomial(n-1, j-1)*b(n-j, k), j=1..n-1))*k)
        end:
    a:= n-> b(2*n, n):
    seq(a(n), n=0..14);  # Alois P. Heinz, Jul 27 2021
  • Mathematica
    Table[BellB[2*n, n], {n, 0, 20}]

Formula

a(n) ~ 4^n * exp((2/LambertW(2) - 3)*n) * n^(2*n) / (sqrt(1 + LambertW(2)) * LambertW(2)^(2*n)).
a(n) = A189233(2n,n) = A292860(2n,n). - Alois P. Heinz, Jul 27 2021

A346655 a(n) = Bell(3*n,n).

Original entry on oeis.org

1, 5, 2430, 5597643, 35618229364, 483040313859705, 11977437107679230274, 490630568583958198181583, 30889771581097736768046865352, 2832037863467651034046820871428061, 362579939205426756198837321528946171110, 62687814132880422794200073791149602981717667
Offset: 0

Views

Author

Vaclav Kotesovec, Jul 27 2021

Keywords

Comments

In general, for k>=1, Bell(k*n,n) ~ (k*n/LambertW(k))^(k*n) / (sqrt(1 + LambertW(k)) * exp(n*(k + 1 - k/LambertW(k)))).

Crossrefs

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(n=0, 1,
          (1+add(binomial(n-1, j-1)*b(n-j, k), j=1..n-1))*k)
        end:
    a:= n-> b(3*n, n):
    seq(a(n), n=0..11);  # Alois P. Heinz, Jul 27 2021
  • Mathematica
    Table[BellB[3*n, n], {n, 0, 15}]

Formula

a(n) ~ (3*n/LambertW(3))^(3*n) / (sqrt(1 + LambertW(3)) * exp(n*(4 - 3/LambertW(3)))).
a(n) = A189233(3n,n) = A292860(3n,n). - Alois P. Heinz, Jul 27 2021

A343263 a(0) = 1; a(n+1) = exp(-a(n)) * Sum_{k>=0} a(n)^k * k^n / k!.

Original entry on oeis.org

1, 1, 1, 2, 22, 301554, 2493675105669492542968967478
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 09 2021

Keywords

Comments

The next term is too large to include.

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[n_] := a[n] = Sum[StirlingS2[n - 1, k] a[n - 1]^k, {k, 0, n - 1}]; Table[a[n], {n, 0, 6}]
    a[0] = 1; a[n_] := a[n] = BellB[n - 1, a[n - 1]]; Table[a[n], {n, 0, 6}]

Formula

a(0) = 1; a(n+1) = n! * [x^n] exp(a(n) * (exp(x) - 1)).
a(0) = 1; a(n+1) = Sum_{k=0..n} Stirling2(n,k) * a(n)^k.
Previous Showing 11-15 of 15 results.