cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 27 results. Next

A321042 a(n) = [x^n] Product_{k>=1} (1 + x^k)^sigma_n(k).

Original entry on oeis.org

1, 1, 5, 37, 491, 12763, 690756, 70250881, 13805853214, 5567873958982, 4386114219458332, 6711687353310594027, 21048327399504558833175, 131214860796100022696745520, 1603892616451767287785208156624, 40296605442098101265893075903063822, 2031406440758379976992019043333960734724
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 26 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[(1 + x^k)^DivisorSigma[n, k], {k, 1, n}], {x, 0, n}], {n, 0, 16}]
    Table[SeriesCoefficient[Product[Product[(1 + x^(i j))^(j^n), {j, 1, n}], {i, 1, n}], {x, 0, n}], {n, 0, 16}]
    Table[SeriesCoefficient[Exp[Sum[DivisorSigma[n + 1, k] x^k/(k (1 - x^(2 k))), {k, 1, n}]], {x, 0, n}], {n, 0, 16}]

Formula

a(n) = [x^n] Product_{i>=1, j>=1} (1 + x^(i*j))^(j^n).
a(n) = [x^n] exp(Sum_{k>=1} sigma_(n+1)(k)*x^k/(k*(1 - x^(2*k)))).

A288418 a(n) = Sum_{d|n} d^2*A000593(n/d).

Original entry on oeis.org

1, 5, 13, 21, 31, 65, 57, 85, 130, 155, 133, 273, 183, 285, 403, 341, 307, 650, 381, 651, 741, 665, 553, 1105, 806, 915, 1210, 1197, 871, 2015, 993, 1365, 1729, 1535, 1767, 2730, 1407, 1905, 2379, 2635, 1723, 3705, 1893, 2793, 4030, 2765, 2257, 4433, 2850, 4030
Offset: 1

Views

Author

Seiichi Manyama, Jun 09 2017

Keywords

Comments

Multiplicative because this sequence is the Dirichlet convolution of A000290 and A000593 which are both multiplicative. - Andrew Howroyd, Jul 27 2018

Crossrefs

Sum_{d|n} d^k*A000593(n/d): A288417 (k=0), A109386 (k=1), this sequence (k=2), A288419 (k=3), A288420 (k=4).

Programs

  • Mathematica
    a[n_] := DivisorSum[n, Function[d, d^2*DivisorSum[n/d, If[OddQ[#], #, 0]&]] ];
    Array[a, 50] (* Jean-François Alcover, Jul 03 2017 *)
    f[p_, e_] := (p^(e + 1) - 1)*(p^(e + 2) - 1)/((p - 1)*(p^2 - 1)); f[2, e_] := (4^(e + 1) - 1)/3; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50] (* Amiram Eldar, Nov 13 2022 *)
  • PARI
    a(n) = sumdiv(n, d, d^2*sigma((n/d)>>valuation(n/d, 2))); \\ Michel Marcus, Jul 03 2017; corrected Jun 12 2022

Formula

L.g.f.: log(Product_{k>=1} (1 + x^k)^sigma(k)) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, Jun 19 2018
From Amiram Eldar, Nov 13 2022: (Start)
a(n) = A001001(n) for odd n.
Multiplicative with a(2^e) = (4^(e+1)-1)/3 and a(p^e) = (p^(e+1)-1)*(p^(e+2)-1)/((p-1)*(p^2-1)) for p > 2.
Sum_{k=1..n} a(k) ~ c * n^3, where c = zeta(2)*zeta(3)/4 = A183699 / 4 = 0.494326... . (End)

A288421 Expansion of Product_{k>=1} 1/(1 + x^k)^sigma(k).

Original entry on oeis.org

1, -1, -2, -2, 1, 5, 4, 10, 6, -5, -20, -27, -37, -32, -18, 23, 82, 128, 190, 185, 143, 43, -160, -424, -662, -968, -1058, -971, -571, 238, 1326, 2748, 4195, 5301, 5930, 5473, 3353, 55, -5346, -12106, -19421, -26603, -31950, -33248, -29344, -17469, 2343, 30966
Offset: 0

Views

Author

Seiichi Manyama, Jun 09 2017

Keywords

Crossrefs

Product_{k>=1} 1/(1 + x^k)^sigma_m(k): A288007 (m=0), this sequence (m=1), A288422 (m=2), A288423 (m=3).

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Rationals(), m); Coefficients(R! ( (&*[1/(1+q^k)^DivisorSigma(1,k): k in [1..(m+2)]]) )); // G. C. Greubel, Oct 29 2018
  • Mathematica
    nmax = 50; CoefficientList[Series[Product[1/(1+x^k)^DivisorSigma[1, k], {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jun 09 2017 *)
  • PARI
    m=50; x='x+O('x^m); Vec(prod(k=1, m+2, 1/(1+x^k)^sigma(k))) \\ G. C. Greubel, Oct 29 2018
    

Formula

Convolution inverse of A192065.
a(0) = 1, a(n) = -(1/n)*Sum_{k=1..n} A288418(k)*a(n-k) for n > 0.
G.f.: exp(-Sum_{k>=1} sigma_2(k)*x^k/(k*(1 - x^(2*k)))). - Ilya Gutkovskiy, Oct 29 2018

A301799 Expansion of Product_{k>=1} 1/(1 - x^k)^A000593(k).

Original entry on oeis.org

1, 1, 2, 6, 8, 18, 34, 56, 98, 175, 290, 479, 809, 1293, 2096, 3382, 5324, 8378, 13140, 20319, 31328, 48098, 73096, 110763, 167100, 250365, 373670, 555613, 821604, 1210709, 1777718, 2598584, 3786132, 5498169, 7954764, 11473798, 16499790, 23650735, 33806012
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 26 2018

Keywords

Comments

Euler transform of A000593.

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Exp[Sum[Sum[DivisorSum[k, -(-1)^# k / # &] * x^(j*k) / j, {k, 1, Floor[nmax/j] + 1}], {j, 1, nmax}]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Mar 31 2018 *)

Formula

a(n) ~ exp((3*Pi)^(2/3) * Zeta(3)^(1/3) * n^(2/3) / 2^(4/3) + 1/24) * Zeta(3)^(13/72) / (sqrt(A) * 2^(23/36) * 3^(49/72) * Pi^(13/72) * n^(49/72)), where A is the Glaisher-Kinkelin constant A074962.
G.f.: exp(Sum_{k>=1} sigma_2(k)*x^k/(k*(1 + x^k))). - Ilya Gutkovskiy, Oct 26 2018

A301553 Expansion of Product_{k>=1} (1 + x^k)^(sigma_9(k)).

Original entry on oeis.org

1, 1, 513, 20197, 413669, 12445003, 372981573, 9158438541, 223776496101, 5567873958982, 132009631562091, 3018411978731059, 68171158091244082, 1512439928316217508, 32796174722883608382, 698503712498547606328, 14656105328324700415778, 302787437988353941515934
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 23 2018

Keywords

Crossrefs

Cf. A107742 (m=0), A192065 (m=1), A288414 (m=2), A288415 (m=3), A301548 (m=4), A301549 (m=5), A301550 (m=6), A301551 (m=7), A301552 (m=8).

Programs

  • Mathematica
    nmax = 30; CoefficientList[Series[Product[(1+x^k)^DivisorSigma[9, k], {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ exp(11 * Pi^(10/11) * (31*Zeta(11))^(1/11) * n^(10/11) / (2^(13/11) * 5^(10/11))) * (155*Zeta(11)/Pi)^(1/22) / (2^(155/264) * sqrt(11) * n^(6/11)).
G.f.: exp(Sum_{k>=1} sigma_10(k)*x^k/(k*(1 - x^(2*k)))). - Ilya Gutkovskiy, Oct 26 2018

A318769 Expansion of e.g.f. Product_{k>=1} (1 + x^k)^(sigma(k)/k), where sigma(k) is the sum of the divisors of k.

Original entry on oeis.org

1, 1, 3, 17, 83, 639, 5749, 53227, 561273, 7216577, 94292531, 1352253561, 21657812923, 359338829407, 6460367397093, 126124578755939, 2527688612931569, 54137820027005697, 1236730462664172643, 29137619131277727457, 725282418459957414051, 18981526480933601454911
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 03 2018

Keywords

Comments

a(n)/n! is the weigh transform of [1, 3/2, 4/3, 7/4, 6/5, ... = sums of reciprocals of divisors of 1, 2, 3, 4, 5, ...].

Crossrefs

Programs

  • Maple
    with(numtheory): a := proc(n) option remember; `if`(n = 0, 1, add(add(-(-1)^(j/d)*sigma(d), d = divisors(j))*a(n-j), j = 1..n)/n) end proc; seq(n!*a(n), n = 0..20); # Vaclav Kotesovec, Sep 04 2018
  • Mathematica
    nmax = 21; CoefficientList[Series[Product[(1 + x^k)^(DivisorSigma[1, k]/k), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
    nmax = 21; CoefficientList[Series[Exp[Sum[Sum[(-1)^(k + 1) x^(j k)/(j k (1 - x^(j k))), {j, 1, nmax}], {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[(-1)^(k/d + 1) d DivisorSigma[-1, d], {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[n! a[n], {n, 0, 21}]
    nmax = 21; s = 1 + x; Do[s *= Sum[Binomial[DivisorSigma[1, k]/k, j]*x^(j*k), {j, 0, nmax/k}]; s = Expand[s]; s = Take[s, Min[nmax + 1, Exponent[s, x] + 1, Length[s]]];, {k, 2, nmax}]; Take[CoefficientList[s, x], nmax + 1] * Range[0, nmax]! (* Vaclav Kotesovec, Sep 03 2018 *)

Formula

E.g.f.: Product_{k>=1} (1 + x^k)^(A017665(k)/A017666(k)).
E.g.f.: exp(Sum_{k>=1} Sum_{j>=1} (-1)^(k+1)*x^(j*k)/(j*k*(1 - x^(j*k)))).
log(a(n)/n!) ~ sqrt(n/2) * Pi^2 / 3. - Vaclav Kotesovec, Sep 04 2018
a(n)/n! ~ c * exp(sqrt(n/2)*Pi^2/3) / n^(3/4 + log(2)/4), where c = 0.15653645678497413538057076667218805302154965061194080137... - Vaclav Kotesovec, Sep 05 2018

A327063 Expansion of Product_{k>=1} (Product_{j=1..k} (1 + x^(k*j))^j).

Original entry on oeis.org

1, 1, 1, 2, 4, 5, 8, 11, 15, 24, 34, 43, 63, 87, 115, 159, 217, 279, 380, 505, 657, 868, 1139, 1458, 1913, 2482, 3162, 4069, 5232, 6628, 8469, 10755, 13544, 17127, 21634, 27061, 33988, 42557, 52985, 66069, 82289, 101862, 126281, 156275, 192655, 237530, 292502
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 19 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[Product[(1+x^(k*j))^j, {j, 1, Min[k, nmax/k]}], {k, 1, nmax}], {x, 0, nmax}], x]

A327064 Expansion of Product_{k>=1} (Product_{j=1..k} (1 + x^(k*j))^k).

Original entry on oeis.org

1, 1, 2, 5, 10, 18, 35, 62, 110, 197, 339, 573, 975, 1621, 2674, 4385, 7108, 11422, 18277, 28976, 45648, 71531, 111372, 172416, 265695, 407210, 621143, 943392, 1426414, 2147672, 3221271, 4812534, 7163440, 10625651, 15706871, 23141148, 33987287, 49762235
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 19 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[Product[(1+x^(k*j))^k, {j, 1, Min[k, nmax/k]}], {k, 1, nmax}], {x, 0, nmax}], x]

A327065 Expansion of Product_{k>=1} (Product_{j=1..k} (1 + x^(k*j))^(k*j)).

Original entry on oeis.org

1, 1, 2, 5, 12, 20, 42, 75, 141, 259, 466, 799, 1427, 2443, 4169, 7049, 11863, 19605, 32518, 53184, 86579, 140018, 225380, 359739, 572864, 905903, 1426270, 2234952, 3488313, 5416403, 8383226, 12917257, 19831763, 30334937, 46245977, 70242043, 106371686
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 19 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[Product[(1+x^(k*j))^(k*j), {j, 1, Min[k, nmax/k]}], {k, 1, nmax}], {x, 0, nmax}], x]

A301798 Expansion of Product_{k>=1} (1 + x^k)^A002131(k).

Original entry on oeis.org

1, 1, 2, 6, 9, 19, 36, 62, 110, 197, 332, 559, 947, 1548, 2538, 4133, 6610, 10536, 16710, 26191, 40879, 63465, 97732, 149852, 228658, 346788, 523694, 787503, 1178325, 1756294, 2607686, 3855676, 5680851, 8341007, 12202794, 17795283, 25869297, 37487313
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 26 2018

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Exp[Sum[-(-1)^j * Sum[DivisorSum[k, # / GCD[#, 2] &] * x^(j*k) / j, {k, 1, Floor[nmax/j] + 1}], {j, 1, nmax}]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Mar 31 2018 *)

Formula

a(n) ~ exp(3^(4/3) * Pi^(2/3) * Zeta(3)^(1/3) * n^(2/3) / 2^(7/3) - Pi^(4/3) * n^(1/3) / (2^(8/3) * 3^(4/3) * Zeta(3)^(1/3)) - Pi^2 / (2592 * Zeta(3))) * Zeta(3)^(1/6) / (2^(7/6) * 3^(1/3) * Pi^(1/6) * n^(2/3)).
Previous Showing 11-20 of 27 results. Next