cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 280 results. Next

A178525 The sum of the costs of all nodes in the Fibonacci tree of order n.

Original entry on oeis.org

0, 0, 3, 8, 22, 49, 104, 208, 403, 760, 1406, 2561, 4608, 8208, 14499, 25432, 44342, 76913, 132808, 228416, 391475, 668840, 1139518, 1936513, 3283392, 5555424, 9381699, 15815528, 26618518, 44733745, 75073256, 125827696, 210642643
Offset: 0

Views

Author

Emeric Deutsch, Jun 15 2010

Keywords

Comments

A Fibonacci tree of order n (n>=2) is a complete binary tree whose left subtree is the Fibonacci tree of order n-1 and whose right subtree is the Fibonacci tree of order n-2; each of the Fibonacci trees of order 0 and 1 is defined as a single node. In a Fibonacci tree the cost of a left (right) edge is defined to be 1 (2). The cost of a node in a Fibonacci tree is defined to be the sum of the costs of the edges that form the path from the root to this node.
A178525 is the 1-sequence of reduction of the odd number sequence (2n-1) by x^2 -> x+1; as such it is related to 0-sequence of this reduction, A192304. See A192232 for definition of "k-sequence of reduction of [sequence] by [substitution]". - Clark Kimberling, Jun 27 2011

References

  • D. E. Knuth, The Art of Computer Programming, Vol. 3, 2nd edition, Addison-Wesley, Reading, MA, 1998, p. 417.

Crossrefs

Programs

  • GAP
    List([0..40], n -> 3 +(2*n-3)*Fibonacci(n-1) +(2*n-5)*Fibonacci(n)); # G. C. Greubel, Jan 30 2019
  • Magma
    [3 +(2*n-3)*Fibonacci(n-1) +(2*n-5)*Fibonacci(n): n in [0..40]]; // G. C. Greubel, Jan 30 2019
    
  • Maple
    with(combinat): seq(3+(2*n-3)*fibonacci(n-1)+(2*n-5)*fibonacci(n), n = 0 .. 32);
  • Mathematica
    Table[3 +(2*n-3)*Fibonacci[n-1] +(2*n-5)*Fibonacci[n], {n,0,40}] (* G. C. Greubel, Jan 30 2019 *)
  • PARI
    a(n) = 3+(2*n-3)*fibonacci(n-1) + (2*n-5)*fibonacci(n); \\ Michel Marcus, Jan 21 2019
    
  • Sage
    [3 +(2*n-3)*fibonacci(n-1) +(2*n-5)*fibonacci(n) for n in range(40)] # G. C. Greubel, Jan 30 2019
    

Formula

a(n) = 3 + (2*n-3)*F(n-1) + (2*n-5)*F(n), where F(k)=A000045(k) are the Fibonacci numbers.
a(n) = a(n-1) + a(n-2) + 2*F(n+1) + 2*F(n-1) - 3 (n>=2), F(0)=0, F(1)=0.
G.f.: z^2*(3-z+z^2)/((1-z)*(1-z-z^2)^2).

A192068 a(n) = Fibonacci(2*n) - (n mod 2).

Original entry on oeis.org

0, 3, 7, 21, 54, 144, 376, 987, 2583, 6765, 17710, 46368, 121392, 317811, 832039, 2178309, 5702886, 14930352, 39088168, 102334155, 267914295, 701408733, 1836311902, 4807526976, 12586269024, 32951280099, 86267571271, 225851433717, 591286729878
Offset: 1

Views

Author

Clark Kimberling, Jun 26 2011

Keywords

Comments

Previous name was: 1-sequence of reduction of Lucas sequence by x^2 -> x+1.
See A192232 for definition of "k-sequence of reduction of [sequence] by [substitution]".

Examples

			(See A192243.)
		

Crossrefs

Partial sums of A081714.

Programs

  • Maple
    a := n -> combinat[fibonacci](2*n)-(n mod 2):
    seq(a(n), n=1..29); # Peter Luschny, Mar 10 2015
  • Mathematica
    c[n_] := LucasL[n];
    Table[c[n], {n, 1, 15}]
    q[x_] := x + 1; p[0, x_] := 1;
    p[n_, x_] :=  p[n - 1, x] + (x^n)*c[n + 1] reductionRules = {x^y_?EvenQ -> q[x]^(y/2),
       x^y_?OddQ -> x q[x]^((y - 1)/2)};
    t = Table[Last[Most[FixedPointList[Expand[#1 /. reductionRules] &, p[n, x]]]], {n, 0,
       30}]
    Table[Coefficient[Part[t, n], x, 0], {n, 1, 30}]  (* A192243 *)
    Table[Coefficient[Part[t, n], x, 1], {n, 1, 30}]  (* A192068 *)
    (* Peter J. C. Moses, Jun 26 2011 *)
    Table[Fibonacci[2n]-Mod[n,2],{n,30}] (* Harvey P. Dale, Jul 11 2020 *)

Formula

Empirical g.f. and recurrence: x^2*(3-2*x)/(1-3*x+3*x^3-x^4), a(n) = 3*a(n-1) - 3*a(n-3) + a(n-4). - Colin Barker, Feb 08 2012
a(n) = Fibonacci(2*n) - (n mod 2). - Peter Luschny, Mar 10 2015

Extensions

New name from Peter Luschny, Mar 10 2015

A192238 Constant term in the reduction of the polynomial x(x+1)(x+2)...(x+n-1) by x^2 -> x+1.

Original entry on oeis.org

1, 0, 1, 6, 37, 256, 1999, 17490, 169895, 1816320, 21205745, 268547510, 3667187645, 53722014720, 840455448415, 13985762375970, 246675543859855, 4596826887347200, 90249727067243425, 1861971659969854950, 40274219840308939925
Offset: 1

Views

Author

Clark Kimberling, Jun 26 2011

Keywords

Comments

See A192232.

Crossrefs

Programs

  • Mathematica
    q[x_] := x + 1;
    p[0, x_] := 1; p[1, x_] := x;
    p[n_, x_] := (x + n) p[n - 1, x] /; n > 1
    reductionRules = {x^y_?EvenQ -> q[x]^(y/2),
       x^y_?OddQ -> x q[x]^((y - 1)/2)};
    t = Table[
      Last[Most[
        FixedPointList[Expand[#1 /. reductionRules] &, p[n, x]]]], {n, 0,
       20}]
    Table[Coefficient[Part[t, n], x, 0], {n, 1, 20}]  (* A192238 *)
    Table[Coefficient[Part[t, n], x, 1], {n, 1, 20}]  (* A192239 *)
    (* Peter J. C. Moses, Jun 25 2011 *)

Formula

Conjecture: a(n) +2*(-n+1)*a(n-1) +(n^2-3*n+1)*a(n-2)=0. - R. J. Mathar, May 04 2014
E.g.f.: 2 - (cosh((sqrt(5)/2)*log(1-x)) + (3/sqrt(5))*sinh((sqrt(5)/2)*log(1-x)))/(1-x)^(3/2). - Fabian Pereyra, Oct 28 2024

A192240 Constant term in the reduction of the polynomial (x+3)^n by x^2 -> x+1.

Original entry on oeis.org

1, 3, 10, 37, 149, 636, 2813, 12695, 57922, 265809, 1223521, 5640748, 26026505, 120137307, 554669594, 2561176781, 11826871933, 54615158940, 252210521317, 1164706900879, 5378632571666, 24838652091993, 114705606355625, 529714071477452
Offset: 0

Views

Author

Clark Kimberling, Jun 26 2011

Keywords

Comments

See A192232.

Crossrefs

Cf. A192232.

Programs

  • Maple
    seq(eval(rem((x+3)^n,x^2-x-1,x),x=0),n=0..50); # Robert Israel, Mar 14 2023
  • Mathematica
    q[x_] := x + 1;
    p[n_, x_] := (x + 3)^n;
    reductionRules = {x^y_?EvenQ -> q[x]^(y/2),
       x^y_?OddQ -> x q[x]^((y - 1)/2)};
    t = Table[
       Last[Most[
         FixedPointList[Expand[#1 /. reductionRules] &, p[n, x]]]], {n, 0,
         30}];
    Table[Coefficient[Part[t, n], x, 0], {n, 30}]  (* A192240 *)
    Table[Coefficient[Part[t, n], x, 1], {n, 30}]  (* A099453 *)
    (* Peter J. C. Moses, Jun 26 2011 *)

Formula

Empirical g.f. and recurrence: (1-4*x)/(1-7*x+11*x^2). a(n) = 7*a(n-1) - 11*a(n-2). - Colin Barker, Feb 09 2012
Proof of recurrence: if r(n) == (x+3)^n mod (x^2-x-1), then r(n+j) == (x+1)^(n+j) mod (x^2 - x - 1). Now r(n+2) - 7*r(n+1) + 11*r(n) == ((x+3)^2 - 7*(x+3) + 11)*r(n) == 0 mod (x^2-x-1) since (x+3)^2 - 7*(x+3) + 11 = x^2 - x - 1. - Robert Israel, Mar 14 2023
a(n) = Sum_{i=0..n} (-1)^i*Fibonacci(i+1)*binomial(n,i)*4^(n-i) (conjecture). - Rigoberto Florez, Mar 25 2020

Extensions

Offset corrected by Robert Israel, Mar 14 2023

A192244 0-sequence of reduction of triangular number sequence by x^2 -> x+1.

Original entry on oeis.org

1, 1, 7, 17, 47, 110, 250, 538, 1123, 2278, 4522, 8812, 16911, 32031, 59991, 111263, 204593, 373370, 676800, 1219440, 2185251, 3896796, 6917892, 12231192, 21544717, 37819885, 66179335, 115464893, 200906723, 348688838
Offset: 1

Views

Author

Clark Kimberling, Jun 26 2011

Keywords

Comments

See A192232 for definition of "k-sequence of reduction of [sequence] by [substitution]".

Crossrefs

Programs

  • Mathematica
    c[n_] := n (n + 1)/2;  (* triangular numbers, A000217 *)
    Table[c[n], {n, 1, 15}]
    q[x_] := x + 1; p[0, x_] := 1;
    p[n_, x_] :=  p[n - 1, x] + (x^n)*c[n]
    reductionRules = {x^y_?EvenQ -> q[x]^(y/2),
       x^y_?OddQ -> x q[x]^((y - 1)/2)};
    t = Table[Last[Most[FixedPointList[Expand[#1 /. reductionRules] &, p[n, x]]]], {n, 0, 30}]
    Table[Coefficient[Part[t,n],x,0],{n,1,30}] (* A192244 *)
    Table[Coefficient[Part[t,n],x,1],{n,1,30}] (* A192245 *)
    (* Peter J. C. Moses, Jun 26 2011 *)

Formula

Empirical g.f.: x*(1-3*x+6*x^2-3*x^3)/(1-x)/(1-x-x^2)^3. - Colin Barker, Feb 10 2012

A192248 0-sequence of reduction of binomial coefficient sequence B(n,4)=A000332 by x^2 -> x+1.

Original entry on oeis.org

1, 1, 16, 51, 191, 569, 1619, 4259, 10694, 25709, 59743, 134818, 296798, 639518, 1352498, 2813750, 5769200, 11676395, 23358450, 46239770, 90667076, 176244326, 339887026, 650715076, 1237467151, 2338753519, 4394813644, 8214444389
Offset: 1

Views

Author

Clark Kimberling, Jun 27 2011

Keywords

Comments

See A192232 for definition of "k-sequence of reduction of [sequence] by [substitution]".

Crossrefs

Programs

  • Mathematica
    c[n_] :=  n (n + 1) (n + 2) (n + 3)/24;  (* binomial B(n,4), A000332 *)
    Table[c[n], {n, 1, 15}]
    q[x_] := x + 1;
    p[0, x_] := 1; p[n_, x_] := p[n - 1, x] + (x^n)*c[n + 1]
    reductionRules = {x^y_?EvenQ -> q[x]^(y/2),
       x^y_?OddQ -> x q[x]^((y - 1)/2)};
    t = Table[
      Last[Most[
        FixedPointList[Expand[#1 /. reductionRules] &, p[n, x]]]], {n, 0,
       40}]
    Table[Coefficient[Part[t, n], x, 0], {n, 1, 40}]  (* A192248 *)
    Table[Coefficient[Part[t, n], x, 1], {n, 1, 40}]  (* A192249 *)
    Table[Coefficient[Part[t, n]/5, x, 1], {n, 1, 40}]  (* A192069 *)
    (* by Peter J. C. Moses, Jun 20 2011 *)

Formula

Conjecture: G.f.: -x*(-1+5*x-20*x^2+30*x^3-25*x^4+8*x^5) / ( (x-1)*(x^2+x-1)^5 ). - R. J. Mathar, May 04 2014

A192250 0-sequence of reduction of central binomial coefficient sequence by x^2 -> x+1.

Original entry on oeis.org

1, 1, 7, 27, 167, 923, 5543, 32999, 200309, 1221329, 7503033, 46301793, 286971677, 1784658077, 11131825877, 69611130917, 436270168817, 2739539507957, 17232530582057, 108564692241257, 684901029237677, 4326215549824277, 27357682806703397
Offset: 1

Views

Author

Clark Kimberling, Jun 27 2011

Keywords

Comments

See A192232 for definition of "k-sequence of reduction of [sequence] by [substitution]".

Crossrefs

Programs

  • Mathematica
    c[n_] := (2 n)!/(n! n!); (* central binomial coefficients, A000984 *)
    Table[c[n], {n, 0, 15}]
    q[x_] := x + 1;
    p[0, x_] := 1; p[n_, x_] := p[n - 1, x] + (x^n)*c[n]
    reductionRules = {x^y_?EvenQ -> q[x]^(y/2),
       x^y_?OddQ -> x q[x]^((y - 1)/2)};
    t = Table[Last[Most[FixedPointList[Expand[#1 /. reductionRules] &, p[n, x]]]], {n, 0,
       30}]
    Table[Coefficient[Part[t, n], x, 0], {n, 1, 30}]  (* A192250 *)
    Table[Coefficient[Part[t, n], x, 1], {n, 1, 30}]  (* A192251 *)
    Table[Coefficient[Part[t, n]/2, x, 1], {n, 1, 30}]  (* A192070 *)
    (* by Peter J. C. Moses, Jun 20 2011 *)

Formula

Conjecture: (n-1)*(n-2)*a(n) -(5*n-7)*(n-2)*a(n-1) -2*(2*n-3)*(3*n-8)*a(n-2) +4*(2*n-3)*(2*n-5)*a(n-3)=0. - R. J. Mathar, May 04 2014

A192254 0-sequence of reduction of (n^2) by x^2 -> x+1.

Original entry on oeis.org

1, 1, 10, 26, 76, 184, 429, 941, 1994, 4094, 8208, 16128, 31169, 59393, 111818, 208330, 384620, 704408, 1280925, 2314525, 4158346, 7432606, 13223040, 23424576, 41335201, 72679969, 127373194, 222545306, 387732844, 673762744
Offset: 1

Views

Author

Clark Kimberling, Jun 27 2011

Keywords

Comments

See A192232 for definition of "k-sequence of reduction of [sequence] by [substitution]".

Programs

  • Mathematica
    c[n_] := n^2;  (* A000290 *)
    Table[c[n], {n, 1, 15}]
    q[x_] := x + 1;
    p[0, x_] := 1; p[n_, x_] := p[n - 1, x] + (x^n)*c[n + 1]
    reductionRules = {x^y_?EvenQ -> q[x]^(y/2),
       x^y_?OddQ -> x q[x]^((y - 1)/2)};
    t = Table[
      Last[Most[
        FixedPointList[Expand[#1 /. reductionRules] &, p[n, x]]]], {n, 0,
       30}]
    Table[Coefficient[Part[t, n], x, 0], {n, 1, 30}]  (* A192254 *)
    Table[Coefficient[Part[t, n], x, 1], {n, 1, 30}]  (* A192255 *)
    (* Peter J. C. Moses, Jun 20 2011 *)

Formula

Empirical g.f.: x*(1-3*x+9*x^2-6*x^3+2*x^4)/(1-x)/(1-x-x^2)^3. - Colin Barker, Feb 10 2012

A192304 0-sequence of reduction of (2n-1) by x^2 -> x+1.

Original entry on oeis.org

1, 1, 6, 13, 31, 64, 129, 249, 470, 869, 1583, 2848, 5073, 8961, 15718, 27405, 47535, 82080, 141169, 241945, 413366, 704261, 1196831, 2029248, 3433441, 5798209, 9774534, 16451149, 27646975, 46397824
Offset: 1

Views

Author

Clark Kimberling, Jun 27 2011

Keywords

Comments

See A192232 for definition of "k-sequence of reduction of [sequence] by [substitution]".

Crossrefs

Programs

  • Mathematica
    c[n_] := 2 n - 1; (* odd numbers, A005408 *)
    Table[c[n], {n, 1, 15}]
    q[x_] := x + 1;
    p[0, x_] := 1; p[n_, x_] := p[n - 1, x] + (x^n)*c[n + 1]
    reductionRules = {x^y_?EvenQ -> q[x]^(y/2),
       x^y_?OddQ -> x q[x]^((y - 1)/2)};
    t = Table[
      Last[Most[
        FixedPointList[Expand[#1 /. reductionRules] &, p[n, x]]]], {n, 0,
       30}]
    Table[Coefficient[Part[t, n], x, 0], {n, 1, 30}]  (* A192304 *)
    Table[Coefficient[Part[t, n], x, 1], {n, 1, 30}]  (* A178525 *)
    (* Peter J. C. Moses, Jun 20 2011 *)

Formula

Empirical g.f.: x*(1-2*x+4*x^2-x^3)/(1-3*x+x^2+3*x^3-x^4-x^5). - Colin Barker, Feb 08 2012

A192309 0-sequence of reduction of (3n-1) by x^2 -> x+1.

Original entry on oeis.org

2, 2, 10, 21, 49, 100, 200, 384, 722, 1331, 2419, 4344, 7726, 13630, 23882, 41601, 72101, 124412, 213844, 366300, 625522, 1065247, 1809575, 3067056, 5187674, 8758010, 14760010, 24835629, 41727577, 70012756, 117321824, 196365624, 328299986, 548309195, 914865307
Offset: 1

Views

Author

Clark Kimberling, Jun 27 2011

Keywords

Comments

See A192232 for definition of "k-sequence of reduction of [sequence] by [substitution]".

Crossrefs

Programs

  • Mathematica
    c[n_] := 3 n - 1;
    Table[c[n], {n, 1, 15}]
    q[x_] := x + 1;
    p[0, x_] := 2; p[n_, x_] := p[n - 1, x] + (x^n)*c[n + 1]
    reductionRules = {x^y_?EvenQ -> q[x]^(y/2), x^y_?OddQ -> x q[x]^((y - 1)/2)};
    t = Table[Last[Most[FixedPointList[Expand[#1 /. reductionRules] &, p[n, x]]]], {n, 0, 40}]
    Table[Coefficient[Part[t, n], x, 0], {n, 1, 40}]  (* A192309 *)
    Table[Coefficient[Part[t, n], x, 1], {n, 1, 40}]  (* A192310 *)
    (* Peter J. C. Moses, Jun 20 2011 *)

Formula

Empirical g.f.: x*(2-4*x+6*x^2-x^3)/(1-3*x+x^2+3*x^3-x^4-x^5). - Colin Barker, Feb 09 2012

Extensions

More terms from Jason Yuen, Aug 23 2025
Previous Showing 51-60 of 280 results. Next