A192761
Coefficient of x in the reduction by x^2->x+1 of the polynomial p(n,x) defined below in Comments.
Original entry on oeis.org
0, 1, 5, 11, 22, 40, 70, 119, 199, 329, 540, 882, 1436, 2333, 3785, 6135, 9938, 16092, 26050, 42163, 68235, 110421, 178680, 289126, 467832, 756985, 1224845, 1981859, 3206734, 5188624, 8395390, 13584047, 21979471, 35563553, 57543060, 93106650
Offset: 0
-
q = x^2; s = x + 1; z = 40;
p[0, n_] := 1; p[n_, x_] := x*p[n - 1, x] + n + 3;
Table[Expand[p[n, x]], {n, 0, 7}]
reduce[{p1_, q_, s_, x_}] :=
FixedPoint[(s PolynomialQuotient @@ #1 +
PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1]
t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}];
u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}]
(* A022318 *)
u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}]
(* A192761 *)
A192808
Constant term in the reduction of the polynomial (x^2 + 2)^n by x^3 -> x^2 + 2. See Comments.
Original entry on oeis.org
1, 2, 6, 26, 126, 618, 3022, 14746, 71902, 350538, 1708910, 8331130, 40615294, 198004778, 965298958, 4705957722, 22942154782, 111845982474, 545263681710, 2658231220538, 12959222223038, 63177890368490, 308000415667278, 1501542003033370
Offset: 0
-
a:=[1,2,6];; for n in [4..25] do a[n]:=7*a[n-1]-12*a[n-2]+8*a[n-3]; od; Print(a); # Muniru A Asiru, Jan 02 2019
-
m:=30; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (1-x)*(1-4*x)/(1-7*x+12*x^2-8*x^3) )); // G. C. Greubel, Jan 02 2019
-
q = x^3; s = x^2 + 2; z = 40;
p[n_, x_] := (x^2 + 2)^n;
Table[Expand[p[n, x]], {n, 0, 7}]
reduce[{p1_, q_, s_, x_}] :=
FixedPoint[(s PolynomialQuotient @@ #1 +
PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1]
t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}];
u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}] (* A192808 *)
u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}] (* A192809 *)
u3 = Table[Coefficient[Part[t, n], x, 2], {n, 1, z}] (* A192810 *)
uu = u2/2 (* A192811 *)
LinearRecurrence[{7,-12,8}, {1,2,6}, 50] (* G. C. Greubel, Jan 02 2019 *)
-
my(x='x+O('x^30)); Vec((1-x)*(1-4*x)/(1-7*x+12*x^2-8*x^3)) \\ G. C. Greubel, Jan 02 2019
-
((1-x)*(1-4*x)/(1-7*x+12*x^2-8*x^3)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jan 02 2019
A192960
Constant term of the reduction by x^2 -> x+1 of the polynomial p(n,x) defined at Comments.
Original entry on oeis.org
1, 3, 7, 15, 29, 53, 93, 159, 267, 443, 729, 1193, 1945, 3163, 5135, 8327, 13493, 21853, 35381, 57271, 92691, 150003, 242737, 392785, 635569, 1028403, 1664023, 2692479, 4356557, 7049093, 11405709, 18454863, 29860635, 48315563, 78176265
Offset: 0
-
F:=Fibonacci;; List([0..40], n-> 2*F(n+4)-(2*n+5)); # G. C. Greubel, Jul 12 2019
-
F:=Fibonacci; [2*F(n+4)-(2*n+5): n in [0..40]]; // G. C. Greubel, Jul 12 2019
-
(* First program *)
q = x^2; s = x + 1; z = 40;
p[0, x]:= 1;
p[n_, x_]:= x*p[n - 1, x] + n^2 + 2;
Table[Expand[p[n, x]], {n, 0, 7}]
reduce[{p1_, q_, s_, x_}]:= FixedPoint[(s PolynomialQuotient @@ #1 + PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1]
t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}];
u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}] (* A192960 *)
u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}] (* A192961 *)
(* Second program *)
With[{F=Fibonacci}, Table[2*F[n+4]-(2*n+5), {n,0,40}]] (* G. C. Greubel, Jul 12 2019 *)
-
vector(40, n, n--; f=fibonacci; 2*f(n+4)-(2*n+5)) \\ G. C. Greubel, Jul 12 2019
-
f=fibonacci; [2*f(n+4)-(2*n+5) for n in (0..40)] # G. C. Greubel, Jul 12 2019
A192967
Constant term of the reduction by x^2 -> x+1 of the polynomial p(n,x) defined at Comments.
Original entry on oeis.org
1, 0, 2, 4, 9, 17, 31, 54, 92, 154, 255, 419, 685, 1116, 1814, 2944, 4773, 7733, 12523, 20274, 32816, 53110, 85947, 139079, 225049, 364152, 589226, 953404, 1542657, 2496089, 4038775, 6534894, 10573700, 17108626, 27682359, 44791019, 72473413, 117264468
Offset: 0
-
List([0..40], n-> 3*Fibonacci(n+1) -n-2); # G. C. Greubel, Jul 11 2019
-
I:=[1, 0, 2, 4]; [n le 4 select I[n] else 3*Self(n-1)-2*Self(n-2)-Self(n-3)+Self(n-4): n in [1..40]]; // Vincenzo Librandi, Feb 20 2012
-
[3*Fibonacci(n+1) -n-2: n in [0..40]]; // G. C. Greubel, Jul 11 2019
-
q = x^2; s = x + 1; z = 40;
p[0, x]:= 1;
p[n_, x_]:= x*p[n-1, x] + n*(n-1)/2;
Table[Expand[p[n, x]], {n, 0, 7}]
reduce[{p1_, q_, s_, x_}]:= FixedPoint[(s PolynomialQuotient @@ #1 + PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1]
t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}];
u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}] (* A192967 *)
u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}] (* A192968 *)
LinearRecurrence[{3,-2,-1,1}, {1,0,2,4}, 41] (* Vladimir Joseph Stephan Orlovsky, Feb 15 2012 *)
Table[3*Fibonacci[n+1] -n-2, {n,0,40}] (* G. C. Greubel, Jul 11 2019 *)
-
vector(40, n, n--; f=fibonacci; 3*f(n+1)-n-2) \\ G. C. Greubel, Jul 11 2019
-
[3*fibonacci(n+1) -n-2 for n in (0..40)] # G. C. Greubel, Jul 11 2019
A192971
Constant term of the reduction by x^2 -> x+1 of the polynomial p(n,x) defined at Comments.
Original entry on oeis.org
1, 2, 9, 21, 44, 83, 149, 258, 437, 729, 1204, 1975, 3225, 5250, 8529, 13837, 22428, 36331, 58829, 95234, 154141, 249457, 403684, 653231, 1057009, 1710338, 2767449, 4477893, 7245452, 11723459, 18969029, 30692610, 49661765, 80354505
Offset: 0
-
F:=Fibonacci;; List([0..40], n-> 5*F(n+3)+F(n+1) -2*(2*n+5)); # G. C. Greubel, Jul 24 2019
-
F:=Fibonacci; [5*F(n+3)+F(n+1) -2*(2*n+5): n in [0..40]]; // G. C. Greubel, Jul 24 2019
-
(* First program *)
q = x^2; s = x + 1; z = 40;
p[0, x]:= 1;
p[n_, x_]:= x*p[n-1, x] + 2*n^2;
Table[Expand[p[n, x]], {n, 0, 7}]
reduce[{p1_, q_, s_, x_}]:= FixedPoint[(s PolynomialQuotient @@ #1 + PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1]
t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}];
u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}] (* A192971 *)
u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}] (* A192972 *)
(* Additional programs *)
With[{F = Fibonacci}, Table[5*F[n+3]+F[n+1] -2*(2*n+5), {n,0,40}]] (* G. C. Greubel, Jul 24 2019 *)
-
vector(40, n, n--; f=fibonacci; 5*f(n+3)+f(n+1) -2*(2*n+5)) \\ G. C. Greubel, Jul 24 2019
-
f=fibonacci; [5*f(n+3)+f(n+1) -2*(2*n+5) for n in (0..40)] # G. C. Greubel, Jul 24 2019
A192617
Coefficient of x in the reduction of the n-th Fibonacci polynomial by x^3->x^2+x+1.
Original entry on oeis.org
0, 1, 0, 3, 2, 10, 16, 43, 92, 213, 486, 1100, 2522, 5719, 13068, 29721, 67772, 154334, 351670, 801137, 1825184, 4158219, 9473244, 21582392, 49169220, 112018989, 255203904, 581412535, 1324587918, 3017709810, 6875021540, 15662845615
Offset: 1
The first five polynomials p(n,x) and their reductions are as follows:
F1(x)=1 -> 1
F2(x)=x -> x
F3(x)=x^2+1 -> x^2+1
F4(x)=x^3+2x -> x^2+3x+1
F5(x)=x^4+3x^2+1 -> 4x^2+2x+2, so that
A192616=(1,0,1,1,2,...), A192617=(0,1,0,3,2,...), A192651=(0,0,1,1,5,...)
-
(See A192616.)
LinearRecurrence[{1,4,-1,-4,1,1},{0,1,0,3,2,10},40] (* Harvey P. Dale, Feb 23 2021 *)
A192651
Coefficient of x^2 in the reduction of the n-th Fibonacci polynomial by x^3->x^2+x+1. See Comments.
Original entry on oeis.org
0, 0, 1, 1, 5, 8, 23, 47, 113, 252, 578, 1316, 2994, 6832, 15545, 35445, 80711, 183928, 418973, 954571, 2174681, 4954436, 11287336, 25715016, 58584744, 133468980, 304072713, 692745597, 1578230845, 3595564360, 8191505015, 18662090915
Offset: 1
The first five polynomials p(n,x) and their reductions are as follows:
F1(x)=1 -> 1
F2(x)=x -> x
F3(x)=x^2+1 -> x^2+1
F4(x)=x^3+2x -> x^2+3x+1
F5(x)=x^4+3x^2+1 -> 4x^2+2x+2, so that
A192616=(1,0,1,1,2,...), A192617=(0,1,0,3,2,...), A192651=(0,0,1,1,5,...)
A192752
Constant term of the reduction by x^2->x+1 of the polynomial p(n,x) defined below in Comments.
Original entry on oeis.org
1, 7, 12, 23, 39, 66, 109, 179, 292, 475, 771, 1250, 2025, 3279, 5308, 8591, 13903, 22498, 36405, 58907, 95316, 154227, 249547, 403778, 653329, 1057111, 1710444, 2767559, 4478007, 7245570, 11723581, 18969155, 30692740, 49661899, 80354643
Offset: 0
-
q = x^2; s = x + 1; z = 40;
p[0, n_] := 1; p[n_, x_] := x*p[n - 1, x] + 4 n + 3;
Table[Expand[p[n, x]], {n, 0, 7}]
reduce[{p1_, q_, s_, x_}] :=
FixedPoint[(s PolynomialQuotient @@ #1 +
PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1]
t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}];
u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}](* A192752 *)
u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}](* A192753 *)
A192753
Coefficient of x in the reduction by x^2->x+1 of the polynomial p(n,x) defined below in Comments.
Original entry on oeis.org
0, 1, 8, 20, 43, 82, 148, 257, 436, 728, 1203, 1974, 3224, 5249, 8528, 13836, 22427, 36330, 58828, 95233, 154140, 249456, 403683, 653230, 1057008, 1710337, 2767448, 4477892, 7245451, 11723458, 18969028, 30692609, 49661764, 80354504, 130016403
Offset: 0
A192754
Constant term of the reduction by x^2->x+1 of the polynomial p(n,x) defined below in Comments.
Original entry on oeis.org
1, 6, 12, 23, 40, 68, 113, 186, 304, 495, 804, 1304, 2113, 3422, 5540, 8967, 14512, 23484, 38001, 61490, 99496, 160991, 260492, 421488, 681985, 1103478, 1785468, 2888951, 4674424, 7563380, 12237809, 19801194, 32039008, 51840207, 83879220, 135719432
Offset: 0
-
p[0, n_] := 1; p[n_, x_] := x*p[n - 1, x] + 5 n + 1;
Table[Expand[p[n, x]], {n, 0, 7}]
reduce[{p1_, q_, s_, x_}] :=
FixedPoint[(s PolynomialQuotient @@ #1 +
PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1]
t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}];
u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}]
(* A192754 *)
u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}]
(* A192755 *)
LinearRecurrence[{2, 0, -1}, {1, 6, 12}, 60] (* Vladimir Joseph Stephan Orlovsky, Feb 15 2012 *)
Comments