cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 26 results. Next

A333167 a(n) = r_2(n^2 + 1), where r_2(k) is the number of ways of writing k as a sum of 2 squares (A004018).

Original entry on oeis.org

4, 4, 8, 8, 8, 8, 8, 12, 16, 8, 8, 8, 16, 16, 8, 8, 8, 16, 24, 8, 8, 16, 16, 16, 8, 8, 8, 16, 16, 8, 16, 16, 24, 16, 16, 8, 8, 16, 24, 8, 8, 12, 16, 24, 16, 8, 16, 32, 16, 8, 16, 8, 16, 16, 8, 16, 8, 32, 16, 8, 16, 8, 16, 16, 16, 8, 8, 16, 32, 8, 24, 8, 32, 32
Offset: 0

Views

Author

Amiram Eldar, Mar 09 2020

Keywords

Examples

			a(0) = r_2(0^2 + 1) = r_2(1) = A004018(1) = 4.
		

References

  • Steven R. Finch, Mathematical Constants II, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, 2018, p. 166.

Crossrefs

Programs

  • Mathematica
    Table[SquaresR[2, k^2 + 1], {k, 0, 100}]

Formula

a(n) = A004018(A002522(n)).

A193562 Number of divisors of n^4+1.

Original entry on oeis.org

1, 2, 2, 4, 2, 4, 2, 4, 4, 8, 4, 4, 4, 4, 4, 8, 2, 4, 4, 8, 2, 4, 4, 4, 2, 8, 4, 8, 2, 4, 4, 8, 4, 8, 2, 4, 4, 8, 4, 4, 4, 8, 4, 16, 8, 8, 2, 8, 2, 8, 4, 8, 4, 8, 2, 8, 2, 4, 4, 16, 8, 4, 4, 8, 8, 4, 8, 8, 4, 8, 8, 4, 4, 4, 2, 8, 8, 16, 4, 16, 2, 4, 2, 16, 4
Offset: 0

Views

Author

Jonathan Vos Post, Aug 09 2011

Keywords

Comments

This is to n^4+1 as A193432 is to n^2+1.
a(n) = 2 when n^4+1 is prime, iff n is in A037896.

Examples

			a(3) = 4 because 3^4+1 = 82, whose 4 factors are {1, 2, 41, 82}.
		

Crossrefs

Cf. A000005, A002523, A037896, A193432 (number of divisors of n^2+1).

Programs

  • Magma
    [NumberOfDivisors(n^4+1):n in [0..90]]; // Marius A. Burtea, Feb 09 2020
  • Mathematica
    DivisorSigma[0,Range[0,90]^4+1] (* Harvey P. Dale, May 05 2013 *)
  • PARI
    a(n) = numdiv(n^4+1); \\ Michel Marcus, Feb 09 2020
    

Formula

a(n) = A000005(A002523(n)) = d(n^4+1) (also called tau(n^4+1) or sigma_0(n^4+1)), the number of divisors of n^4+1.

A193929 Number of prime factors of n^4 + 1, counted with multiplicity.

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 1, 2, 2, 3, 2, 2, 2, 2, 2, 3, 1, 2, 2, 3, 1, 2, 2, 2, 1, 3, 2, 3, 1, 2, 2, 3, 2, 3, 1, 2, 2, 3, 2, 2, 2, 3, 2, 4, 3, 3, 1, 3, 1, 3, 2, 3, 2, 3, 1, 3, 1, 2, 2, 4, 3, 2, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 2, 2, 1, 3, 3, 4, 2, 4, 1, 2, 1, 4, 2, 4, 2, 3, 1, 3, 1, 3, 2, 3, 2, 4, 3, 3, 2, 3, 2, 3, 2, 2, 3, 2, 1, 3, 2, 3, 3, 4, 2, 2, 2, 2, 2, 3, 1
Offset: 0

Views

Author

Jonathan Vos Post, Aug 09 2011

Keywords

Comments

This is to A193330 as A002523(n) = n^4+1 is to A002522(n) = n^2 + 1. a(n) = 2 when n^4+1 is prime, iff n is in A037896.

Examples

			a(9) = 3 because 9^4+1 = 6562 = 2 * 17 * 193, which has 3 prime factors, counted with multiplicity
		

Crossrefs

Programs

  • Magma
    [0] cat [&+[p[2]: p in Factorization(n^4+1)]:n in [1..120]]; // Marius A. Burtea, Feb 09 2020
  • Mathematica
    Join[{0}, Table[Total[Transpose[FactorInteger[n^4 + 1]][[2]]], {n, 100}]] (* T. D. Noe, Aug 10 2011 *)
    Join[{0},Table[PrimeOmega[n^4+1],{n,120}]] (* Harvey P. Dale, Sep 25 2012 *)
  • PARI
    a(n) = bigomega(n^4+1); \\ Michel Marcus, Feb 09 2020
    

Formula

a(n) = A001222(A002523(n)) = bigomega(n^4+1) or Omega(n^4+1).

A172438 Numbers k such that tau(k^2+1) - tau(k^2) = 1 where the function tau(k) is the number of positive divisors of k.

Original entry on oeis.org

1, 3, 5, 11, 19, 27, 29, 59, 61, 71, 79, 101, 125, 131, 139, 181, 199, 242, 243, 271, 333, 349, 379, 387, 409, 423, 449, 461, 477, 521, 569, 571, 603, 631, 641, 661, 739, 747, 751, 772, 788, 821, 881, 929, 991, 1017, 1031, 1039, 1051, 1058, 1069, 1075, 1083
Offset: 1

Views

Author

Michel Lagneau, Feb 02 2010

Keywords

Comments

Square roots of perfect squares in A055927. [Juri-Stepan Gerasimov, Apr 06 2011]

Examples

			k=1, tau(2) - tau(1) = 2 - 1 = 1.
k=3, tau(10) - tau(9) = 4 - 3 = 1.
k=5, tau(26) - tau(25) = 4 - 3 = 1.
k=387, tau(149770)- tau(149769) = 16 - 15 = 1.
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 840.
  • T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 38.
  • D. S. Mitrinovic et al., Handbook of Number Theory, Kluwer, Chap. II. (For inequalities, etc.)

Crossrefs

Programs

  • Magma
    [m:m in [1..1100]| #Divisors(m^2+1) - #Divisors(m^2) eq 1]; // Marius A. Burtea, Jul 12 2019
  • Maple
    with(numtheory): for n from 1 to 100000 do; if tau(n^2+1)-tau(n^2)= 1 then print(n); else fi ; od;
  • Mathematica
    dsQ[n_]:=Module[{n2=n^2},DivisorSigma[0,n2+1]-DivisorSigma[0,n2]==1]; Select[Range[1200],dsQ] (* Harvey P. Dale, May 05 2011 *)
    Select[Sqrt[#]&/@Flatten[Position[Partition[DivisorSigma[0,Range[1200000]],2,1],?(#[[2]]-#[[1]]==1&),1,Heads->False]],IntegerQ] (* _Harvey P. Dale, Apr 09 2022 *)

A194003 Number of prime factors of n^8 + 1, counted with multiplicity.

Original entry on oeis.org

0, 1, 1, 3, 1, 3, 2, 3, 3, 2, 2, 3, 3, 2, 3, 3, 2, 3, 2, 3, 2, 3, 2, 4, 3, 3, 2, 6, 2, 4, 3, 3, 2, 2, 2, 4, 3, 3, 2, 4, 6, 3, 2, 2, 4, 3, 3, 2, 3, 3, 2, 2, 2, 2, 3, 3, 2, 5, 2, 3, 2, 4, 4, 4, 3, 6, 2, 5, 2, 2, 2, 5, 2, 5, 4, 4, 3, 4, 3, 5, 4, 2, 3, 4, 2, 4
Offset: 0

Views

Author

Jonathan Vos Post, Aug 10 2011

Keywords

Comments

This is to A193330 as A002523(n) = n^4+1 is to A002522(n) = n^2 + 1, and as A060890(n) = n^8+1 is to A002522(n) = n^2 + 1. a(n) = 1 when n^8+1 is prime, iff n is in {1, 2, 4} unless there is a larger Fermat prime than 65537.

Examples

			a(10) = 2 because 10^8 + 1 = 100000001 = 17 * 5882353 has 2 prime factors.
a(40) = 6 because 40^8 + 1 = 6553600000001 = 17^2 * 113 * 337 * 641 * 929 has 6 prime factors (with multiplicity) and is the smallest example not squarefree.
		

Crossrefs

Programs

  • Magma
    [0] cat [&+[p[2]: p in Factorization(n^8+1)]:n in [1..90]]; // Marius A. Burtea, Feb 09 2020
  • Mathematica
    Join[{0}, Table[Total[Transpose[FactorInteger[n^8 + 1]][[2]]], {n, 50}]]
    PrimeOmega[Range[0,90]^8+1] (* Harvey P. Dale, May 27 2018 *)
  • PARI
    a(n) = bigomega(n^8+1); \\ Michel Marcus, Feb 09 2020
    

Formula

a(n) = A001222(A060890(n)) = bigomega(n^8+1) or Omega(n^8+1)

A209877 a(n) = A209874(n)/2: Least m > 0 such that 4*m^2 = -1 modulo the Pythagorean prime A002144(n).

Original entry on oeis.org

1, 4, 2, 6, 3, 16, 15, 25, 23, 17, 11, 5, 38, 49, 50, 22, 14, 40, 81, 56, 7, 61, 72, 32, 8, 41, 30, 114, 69, 144, 57, 74, 68, 21, 52, 137, 167, 10, 133, 196, 127, 191, 174, 24, 104, 143, 26, 59, 43, 12, 258, 238, 289, 97, 77, 252, 53, 29, 13, 283, 48, 190, 335, 361, 31, 228, 291, 159, 263, 123, 260, 325, 363, 247, 162
Offset: 1

Views

Author

M. F. Hasler, Mar 14 2012

Keywords

Comments

Also: Square root of -1/4 in Z/pZ, for Pythagorean primes p=A002144(n).
Also: Least m>0 such that the Pythagorean prime p=A002144(n) divides 4(kp +/- m)^2+1 for all k>=0.
In practice these can also be determined by searching the least N^2+1 whose least prime factor is p=A002144(n): For given p, all of these N will have a(n) or p-a(n) as remainder mod 2p.

Examples

			a(1)=1 since A002144(1)=5 and 4*1^2+1 is divisible by 5; as a consequence 4*(5k+/-1)^2+1 = 100k^2 +/- 40k + 5 is divisible by 5 for all k.
a(2)=4 since A002144(2)=13 and 4*4^2+1 = 65 is divisible by 13, while 4*1^1+1=5, 4*2^2+1=17 and 4*3^2+1=37 are not. As a consequence, 4*(13k+/-4)^2+1 = 13(...)+4*4^1+1 is divisible by 13 for all k.
		

Crossrefs

Programs

  • Maple
    f:= proc(p) local m;
       if not isprime(p) then return NULL fi;
       m:= numtheory:-msqrt(-1/4, p);
       min(m,p-m);
    end proc:
    map(f, [seq(i,i=5..1000,4)]); # Robert Israel, Mar 13 2018
  • Mathematica
    f[p_] := Module[{r}, r /. Solve[4 r^2 == -1, r, Modulus -> p] // Min];
    f /@ Select[4 Range[300] + 1, PrimeQ] (* Jean-François Alcover, Jul 27 2020 *)
  • PARI
    apply(p->lift(sqrt(Mod(-1,p)/4)), A002144)

A333173 a(n) = r_4(n^2 + 1), where r_4(k) is the number of ways of writing k as a sum of 4 squares (A000118).

Original entry on oeis.org

8, 24, 48, 144, 144, 336, 304, 744, 672, 1008, 816, 1488, 1440, 2592, 1584, 2736, 2064, 4320, 3472, 4368, 3216, 6048, 4704, 7776, 4624, 7536, 5424, 10656, 7584, 10128, 7776, 12768, 10416, 15840, 10080, 14736, 10384, 19872, 14736, 18288, 12816, 20904, 16992, 28272
Offset: 0

Views

Author

Amiram Eldar, Mar 09 2020

Keywords

Examples

			a(0) = r_4(0^2 + 1) = r_4(1) = A000118(1) = 8.
		

Crossrefs

Programs

  • Mathematica
    Table[SquaresR[4, k^2 + 1], {k, 0, 100}]

Formula

a(n) = A000118(A002522(n)).

A261609 Number of composite divisors of n^2+1.

Original entry on oeis.org

0, 0, 1, 0, 1, 0, 3, 1, 1, 0, 1, 1, 4, 0, 1, 0, 4, 3, 1, 0, 4, 1, 4, 0, 1, 0, 4, 1, 1, 1, 4, 3, 4, 1, 1, 0, 4, 3, 1, 0, 3, 1, 8, 1, 1, 1, 11, 1, 1, 1, 1, 1, 4, 0, 4, 0, 12, 1, 1, 1, 1, 1, 4, 1, 1, 0, 4, 5, 1, 3, 1, 4, 11, 0, 4, 1, 4, 1, 1, 1, 4, 3, 11, 0, 1, 1
Offset: 1

Views

Author

Michel Lagneau, Aug 26 2015

Keywords

Examples

			a(7) = 3 because the composite divisors of 7^2+1 are 10, 25, 50.
		

Crossrefs

Programs

Formula

a(n) = A055212(A002522(n)).

A333171 a(n) = Sum_{k=0..n} d(k^2 + 1), where d(k) is the number of divisors of k (A000005).

Original entry on oeis.org

1, 3, 5, 9, 11, 15, 17, 23, 27, 31, 33, 37, 41, 49, 51, 55, 57, 65, 71, 75, 77, 85, 89, 97, 99, 103, 105, 113, 117, 121, 125, 133, 139, 147, 151, 155, 157, 165, 171, 175, 177, 183, 187, 199, 203, 207, 211, 227, 231, 235, 239, 243, 247, 255, 257, 265, 267, 283
Offset: 0

Views

Author

Amiram Eldar, Mar 09 2020

Keywords

Examples

			a(0) = d(0^1 + 1) = d(1) = 1.
a(1) = d(0^1 + 1) + d(1^1 + 1) = d(1) + d(2) = 1 + 2 = 3.
		

References

  • Steven R. Finch, Mathematical Constants II, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, 2018, p. 166.

Crossrefs

Partial sums of A193432.

Programs

  • Mathematica
    Accumulate @ Table[DivisorSigma[0, k^2 + 1], {k, 0, 100}]
  • PARI
    a(n) = sum(k=0, n, numdiv(k^2+1)); \\ Michel Marcus, Mar 10 2020

Formula

a(n) ~ (3/Pi) * n * log(n).

A353008 a(n) is the smallest positive k such that k^2 + 1 has 2*n divisors, or -1 if no such k exists.

Original entry on oeis.org

1, 3, 7, 13, 182, 43, 1068, 47, 268, 443, 15905182, 157, 1832311432, 14557, 16432, 307, 255250280182, 1407, 355101282318, 3307, 92682, 3626068, 21346690797155182, 993, 313932, 120813568, 51982, 16693, 982692130687379186432, 2943, 2444574943897581751068, 2163
Offset: 1

Views

Author

Jon E. Schoenfield, May 15 2022

Keywords

Comments

From Jon E. Schoenfield, Jun 14 2024: (Start)
For integers k, neither 3 nor 4 ever divides k^2 + 1, so there exists no prime p < 5 such that p^2 divides k^2 + 1.
For n <= 32, the only n for which the 5-adic valuation of a(n)^2 + 1 is not gpf(n) - 1 is n = 16 (see Examples).
Conjecture: a(n) is never -1. (End)

Examples

			From _Jon E. Schoenfield_, Jun 14 2024: (Start)
From a(5) = 182 because 182 is the smallest positive integer k such that k^2 + 1 has 2*5 divisors: 182^2 + 1 = 33125 = 5^4 * 53.
a(16) = 307 because 307 is the smallest positive integer k such that k^2 + 1 has 2*16 divisors: 307^2 + 1 = 94250 = 2 * 5^3 * 377.
a(31) = 2444574943897581751068: 2444574943897581751068^2 + 1 = 5975946656331864965715445578098297119140625 = 5^30 * 6416623862896477837609. (End)
		

Crossrefs

Extensions

a(26), a(29), and a(31) corrected by Jon E. Schoenfield, Jun 14 2024
Previous Showing 11-20 of 26 results. Next