A342545
a(n)^2 is the least square that has exactly n 0's in base n.
Original entry on oeis.org
2, 24, 16, 280, 216, 3430, 4096, 19683, 100000, 4348377, 2985984, 154457888, 105413504, 4442343750, 4294967296, 313909084845, 198359290368, 8712567840033, 10240000000000, 500396429346030, 584318301411328, 38112390316557080, 36520347436056576, 298023223876953125
Offset: 2
n a(n) a(n)^2 in base n
2 2 4 100
3 24 576 210100
4 16 256 10000
5 280 78400 10002100
6 216 46656 1000000
7 3430 11764900 202000000
8 4096 16777216 100000000
9 19683 387420489 1000000000
10 100000 10000000000 10000000000
11 4348377 18908382534129 6030000000000
12 2985984 8916100448256 1000000000000
-
for(b=2,12,for(k=1,oo,my(s=k^2,v=digits(s,b));if(sum(k=1,#v,v[k]==0)==b,print1(k,", ");break)))
-
from numba import njit
@njit # works with 64 bits through a(14)
def digits0(n, b):
count0 = 0
while n >= b:
n, r = divmod(n, b)
count0 += (r==0)
return count0 + (n==0)
from sympy import integer_nthroot
def a(n):
an = integer_nthroot(n**n, 2)[0]
while digits0(an*an, n) != n: an += 1
return an
print([a(n) for n in range(2, 13)]) # Michael S. Branicky, Apr 07 2021
-
from itertools import product
from functools import reduce
from sympy.utilities.iterables import multiset_permutations
from sympy import integer_nthroot
def A342545(n):
for a in range(1,n):
p, q = integer_nthroot(a*n**n,2)
if q: return p
l = 1
while True:
cmax = n**(l+n+1)
for a in range(1,n):
c = cmax
for b in product(range(1,n),repeat=l):
for d in multiset_permutations((0,)*n+b):
p, q = integer_nthroot(reduce(lambda c, y: c*n+y, [a]+d),2)
if q: c = min(c,p)
if c < cmax:
return c
l += 1 # Chai Wah Wu, Apr 07 2021
A384075
a(n) = neg(M(n)), where M(n) is the n X n circulant matrix with (row 1) = (1,3,5,7, ..., 2n - 1), and neg(M(n)) is the negative part of the determinant of M(n); see A380661.
Original entry on oeis.org
0, -9, -45, -4716, -200200, -20916552, -2462535768, -406262340288, -84096850828032, -21708790967664000, -6808563893605222144, -2552145158372103507456, -1126589571631974396251136, -578462264691449080954733568, -341831891354409385226121600000
Offset: 1
The rows of M(4) are (1,3,5,7), (7,1,3,5), (5,7,1,3), (3,5,7,1); determinant(M(4)) = -4716; permanent(M(4)) = 2668, so neg(M(4)) = (-2048 - 7384)/2 = -4716 and pos(M(4)) = (-2048 + 7384)/2 = 2668.
-
z = 19;
v[n_] := Table[2 k + 1, {k, 0, n - 1}];
u[n_] := Table[RotateRight[#, k - 1], {k, 1, Length[#]}] &[v[n]];
p = Table[Simplify[Permanent[u[n]]], {n, 1, z}] (* A384074 *)
d = Table[Simplify[Det[u[n]]], {n, 1, z}] (* A193678, with alternating signs *)
neg = (d - p)/2 (* A384075 *)
pos = (d + p)/2 (* A384076 *)
A193681
Discriminant of minimal polynomial of 2*cos(Pi/n) (see A187360).
Original entry on oeis.org
1, 1, 1, 8, 5, 12, 49, 2048, 81, 2000, 14641, 2304, 371293, 1075648, 1125, 2147483648, 410338673, 1259712, 16983563041, 1024000000, 453789, 2414538435584, 41426511213649, 1358954496, 762939453125, 7340688973975552, 31381059609, 4739148267126784, 10260628712958602189, 324000000
Offset: 1
-
g:= proc(n) local P,z,j;
P:= factor(evala(Norm(z-convert(2*cos(Pi/n),RootOf))));
if type(P,`^`) then P:= op(1,P) fi;
discrim(P,z)
end proc:
map(g, [$1..100]); # Robert Israel, Aug 04 2015
-
Table[NumberFieldDiscriminant[Cos[Pi/m]], {m, 1, z}] (* Clark Kimberling, Aug 03 2015 *)
A317403
a(n)=(-1)^((n-2)*(n-1)/2)*2^(n-1)*n^(n-3).
Original entry on oeis.org
1, 1, -4, -32, 400, 6912, -153664, -4194304, 136048896, 5120000000, -219503494144, -10567230160896, 564668382613504, 33174037869887488, -2125764000000000000, -147573952589676412928, 11034809241396899282944, 884295678882933431599104, -75613185918270483380568064
Offset: 1
- Rigoberto Flórez, Robinson Higuita, and Alexander Ramírez, The resultant, the discriminant, and the derivative of generalized Fibonacci polynomials, arXiv:1808.01264 [math.NT], 2018.
- Rigoberto Flórez, Robinson Higuita, and Antara Mukherjee, Star of David and other patterns in the Hosoya-like polynomials triangles, 2018.
- R. Flórez, R. Higuita and A. Mukherjees, Characterization of the strong divisibility property for generalized Fibonacci polynomials, Integers, 18 (2018), Paper No. A14.
- R. Flórez, N. McAnally, and A. Mukherjees, Identities for the generalized Fibonacci polynomial, Integers, 18B (2018), Paper No. A2.
- Eric Weisstein's World of Mathematics, Discriminant
- Eric Weisstein's World of Mathematics, Fibonacci Polynomial
Cf.
A006645,
A001629,
A001871,
A006645,
A007701,
A045618,
A045925,
A093967,
A168561,
A193678,
A317404,
A317405,
A317408,
A317451,
A318184,
A318197.
-
[(-1)^((n-2)*(n-1) div 2)*2^(n-1)*n^(n-3): n in [1..20]]; // Vincenzo Librandi, Aug 27 2018
-
Array[(-1)^((#-2)*(#-1)/2)*2^(#-1)*#^(#-3)&,20]
-
concat([1], [poldisc(p) | p<-Vec(x/(1-x^2-y*x) - x + O(x^20))]) \\ Andrew Howroyd, Aug 26 2018
A317450
a(n)=(-1)^((n-2)*(n-1)/2)*2^((n-1)^2)*n^(n-3).
Original entry on oeis.org
1, 1, -16, -2048, 1638400, 7247757312, -164995463643136, -18446744073709551616, 9803356117276277820358656, 24178516392292583494123520000000, -271732164163901599116133024293512544256, -13717048991958695477963985711266803110069141504, 3074347100178259797134292590832254504315406543889629184
Offset: 1
- Rigoberto Flórez, Robinson Higuita, and Alexander Ramírez, The resultant, the discriminant, and the derivative of generalized Fibonacci polynomials, arXiv:1808.01264 [math.NT], 2018.
- Rigoberto Flórez, Robinson Higuita, and Antara Mukherjee, Star of David and other patterns in the Hosoya-like polynomials triangles, 2018.
- R. Flórez, N. McAnally, and A. Mukherjees, Identities for the generalized Fibonacci polynomial, Integers, 18B (2018), Paper No. A2.
- R. Flórez, R. Higuita and A. Mukherjees, Characterization of the strong divisibility property for generalized Fibonacci polynomials, Integers, 18 (2018), Paper No. A14.
- Eric Weisstein's World of Mathematics, Discriminant
- Eric Weisstein's World of Mathematics, Pell Polynomial
Cf.
A006645,
A001629,
A001871,
A006645,
A007701,
A045618,
A045925,
A093967,
A193678,
A317404,
A317405,
A317408,
A317451,
A318184,
A318197.
Comments