cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-27 of 27 results.

A210978 A186029 and positive terms of A001106 interleaved.

Original entry on oeis.org

0, 1, 5, 9, 17, 24, 36, 46, 62, 75, 95, 111, 135, 154, 182, 204, 236, 261, 297, 325, 365, 396, 440, 474, 522, 559, 611, 651, 707, 750, 810, 856, 920, 969, 1037, 1089, 1161, 1216, 1292, 1350, 1430, 1491, 1575, 1639, 1727, 1794, 1886, 1956, 2052, 2125, 2225, 2301
Offset: 0

Views

Author

Omar E. Pol, Aug 03 2012

Keywords

Comments

Vertex number of a square spiral similar to A118277.

Crossrefs

Members of this family are A093005, A210977, A006578, this sequence, A181995, A210981, A210982.

Programs

  • PARI
    Vec(-x*(2*x^2+4*x+1)/((x-1)^3*(x+1)^2) + O(x^100)) \\ Colin Barker, Sep 15 2013

Formula

a(n) = (3*(-1+(-1)^n)+2*(5+(-1)^n)*n+14*n^2)/16. a(n) = a(n-1)+2*a(n-2)-2*a(n-3)-a(n-4)+a(n-5). G.f.: -x*(2*x^2+4*x+1) / ((x-1)^3*(x+1)^2). - Colin Barker, Sep 15 2013

Extensions

More terms from Colin Barker, Sep 15 2013

A033572 a(n) = (2*n+1)*(7*n+1).

Original entry on oeis.org

1, 24, 75, 154, 261, 396, 559, 750, 969, 1216, 1491, 1794, 2125, 2484, 2871, 3286, 3729, 4200, 4699, 5226, 5781, 6364, 6975, 7614, 8281, 8976, 9699, 10450, 11229, 12036, 12871, 13734, 14625, 15544, 16491, 17466, 18469, 19500, 20559, 21646, 22761, 23904, 25075, 26274, 27501, 28756
Offset: 0

Views

Author

Keywords

Comments

Sequence found by reading the line from 1, in the direction 1, 24,..., in the square spiral whose vertices are the generalized enneagonal numbers A118277. Also sequence found by reading the same line in the square spiral whose edges have length A195019 and whose vertices are the numbers A195020. - Omar E. Pol, Sep 13 2011

Crossrefs

Bisection of A001106.

Programs

Formula

a(n) = a(n-1) + 28*n - 5 for n>0, a(0)=1. - Vincenzo Librandi, Nov 17 2010
From G. C. Greubel, Oct 12 2019: (Start)
G.f.: (1 + 21*x + 6*x^2)/(1-x)^3.
E.g.f.: (1 + 23*x + 14*x^2)*exp(x). (End)
Sum 1/a(n) = -gamma/5 -2*log(2)/5 -psi(1/7)/5 = 1.0800940432405839438217..., gamma=A001620, psi(1/7) = -A354627. - R. J. Mathar, May 07 2024

A195026 a(n) = 7*n*(2*n + 1).

Original entry on oeis.org

0, 21, 70, 147, 252, 385, 546, 735, 952, 1197, 1470, 1771, 2100, 2457, 2842, 3255, 3696, 4165, 4662, 5187, 5740, 6321, 6930, 7567, 8232, 8925, 9646, 10395, 11172, 11977, 12810, 13671, 14560, 15477, 16422, 17395, 18396, 19425, 20482, 21567, 22680, 23821, 24990
Offset: 0

Views

Author

Omar E. Pol, Oct 13 2011

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 21, ..., in the Pythagorean spiral whose edges have length A195019 and whose vertices are the numbers A195020. Semi-diagonal opposite to A195320 in the same square spiral, which is related to the primitive Pythagorean triple [3, 4, 5].
Sum of the numbers from 6*n to 8*n. - Wesley Ivan Hurt, Dec 23 2015

Crossrefs

Programs

Formula

a(n) = 14*n^2 + 7*n.
a(n) = 7*A014105(n). - Bruno Berselli, Oct 13 2011
From Colin Barker, Apr 09 2012: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2.
G.f.: 7*x*(3+x)/(1-x)^3. (End)
a(n) = Sum_{i=6*n..8*n} i. - Wesley Ivan Hurt, Dec 23 2015
E.g.f.: 7*exp(x)*x*(3 + 2*x). - Elmo R. Oliveira, Dec 29 2024

A195030 a(n) = (n-2)*(14*n-39) for n > 2, otherwise a(n) = n.

Original entry on oeis.org

0, 1, 2, 3, 34, 93, 180, 295, 438, 609, 808, 1035, 1290, 1573, 1884, 2223, 2590, 2985, 3408, 3859, 4338, 4845, 5380, 5943, 6534, 7153, 7800, 8475, 9178, 9909, 10668, 11455, 12270, 13113, 13984, 14883, 15810, 16765, 17748, 18759, 19798, 20865, 21960, 23083
Offset: 0

Views

Author

Omar E. Pol, Oct 18 2011

Keywords

Comments

Union of [1, 2] and A195021.
Sequence found by reading the line from 0, in the direction 0, 1,..., in the Pythagorean spiral whose edges have length A195019 and whose vertices are the numbers A195020. This is the one of the semi-axis of the square spiral, which is related to the primitive Pythagorean triple [3, 4, 5].

Crossrefs

Programs

Formula

G.f.: x*(1-x+30*x^3-2*x^4)/(1-x)^3. - Bruno Berselli, Oct 18 2011

Extensions

Both sequence (based on A195021) and definition suggested by Bruno Berselli, Oct 18 2011

A195027 a(n) = 2*n*(7*n + 5).

Original entry on oeis.org

0, 24, 76, 156, 264, 400, 564, 756, 976, 1224, 1500, 1804, 2136, 2496, 2884, 3300, 3744, 4216, 4716, 5244, 5800, 6384, 6996, 7636, 8304, 9000, 9724, 10476, 11256, 12064, 12900, 13764, 14656, 15576, 16524, 17500, 18504, 19536, 20596, 21684, 22800, 23944, 25116, 26316
Offset: 0

Views

Author

Omar E. Pol, Oct 13 2011

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 24, ..., in the Pythagorean spiral whose edges have length A195019 and whose vertices are the numbers A195020. Semi-axis opposite to A195023 in the same square spiral, which is related to the primitive Pythagorean triple [3, 4, 5].

Crossrefs

Programs

Formula

a(n) = 14*n^2 + 10*n.
a(n) = 4*A179986(n). - Bruno Berselli, Oct 13 2011
G.f.: 4*x*(6+x)/(1-x)^3. - Colin Barker, Jan 09 2012
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3); a(0)=0, a(1)=24, a(2)=76. - Harvey P. Dale, Jul 24 2012
E.g.f.: 2*exp(x)*x*(12 + 7*x). - Elmo R. Oliveira, Dec 30 2024

A195028 a(n) = n*(14*n + 13).

Original entry on oeis.org

0, 27, 82, 165, 276, 415, 582, 777, 1000, 1251, 1530, 1837, 2172, 2535, 2926, 3345, 3792, 4267, 4770, 5301, 5860, 6447, 7062, 7705, 8376, 9075, 9802, 10557, 11340, 12151, 12990, 13857, 14752, 15675, 16626, 17605, 18612, 19647, 20710, 21801, 22920, 24067, 25242
Offset: 0

Views

Author

Omar E. Pol, Oct 13 2011

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 27, ..., in the Pythagorean spiral whose edges have length A195019 and whose vertices are the numbers A195020. Numbers opposite to the semi-diagonal A195024 in the same square spiral, which is related to the primitive Pythagorean triple [3, 4, 5].

Crossrefs

Programs

Formula

a(n) = 14*n^2 + 13*n.
G.f.: x*(27+x)/(1-x)^3. - Colin Barker, Jan 09 2012
From Elmo R. Oliveira, Dec 30 2024: (Start)
E.g.f.: exp(x)*x*(27 + 14*x).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n >= 3. (End)

Extensions

Name suggested by Bruno Berselli, Oct 13 2011

A195029 a(n) = n*(14*n + 13) + 3.

Original entry on oeis.org

3, 30, 85, 168, 279, 418, 585, 780, 1003, 1254, 1533, 1840, 2175, 2538, 2929, 3348, 3795, 4270, 4773, 5304, 5863, 6450, 7065, 7708, 8379, 9078, 9805, 10560, 11343, 12154, 12993, 13860, 14755, 15678, 16629, 17608, 18615, 19650, 20713, 21804, 22923, 24070, 25245
Offset: 0

Views

Author

Omar E. Pol, Sep 07 2011

Keywords

Comments

Sequence found by reading the line from 3, in the direction 3, 30, ..., in the Pythagorean spiral whose edges have length A195019 and whose vertices are the numbers A195020. This is the semi-diagonal parallel to A195024 and also parallel to A195028 in the same square spiral, which is related to the primitive Pythagorean triple [3, 4, 5].
56*a(n) + 1 is a perfect square. - Bruno Berselli, Feb 14 2017

Crossrefs

Programs

Formula

a(n) = 14*n^2 + 13*n + 3 = A195028(n) + 3 = (2*n + 1)*(7*n + 3).
From Colin Barker, Apr 09 2012: (Start)
G.f.: (3 + 21*x + 4*x^2)/(1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). (End)
From Elmo R. Oliveira, Dec 29 2024: (Start)
E.g.f.: exp(x)*(3 + 27*x + 14*x^2).
a(n) = A005408(n)*A017017(n) = A022264(2*n+1). (End)

Extensions

Edited by Bruno Berselli, Feb 14 2017
Previous Showing 21-27 of 27 results.