A195559
Denominators a(n) of Pythagorean approximations b(n)/a(n) to 2/3.
Original entry on oeis.org
1, 4, 91, 240, 840, 989, 5396, 117719, 312120, 1089720, 1284121, 7003804, 152799571, 405130920, 1414456320, 1666787669, 9090932396, 198333725039, 525859622640, 1835963213040, 2163489110641, 11800023246004, 257437022301451
Offset: 1
-
r = 2/3; z = 25;
p[{f_, n_}] := (#1[[2]]/#1[[
1]] &)[({2 #1[[1]] #1[[2]], #1[[1]]^2 - #1[[
2]]^2} &)[({Numerator[#1], Denominator[#1]} &)[
Array[FromContinuedFraction[
ContinuedFraction[(#1 + Sqrt[1 + #1^2] &)[f], #1]] &, {n}]]]];
{a, b} = ({Denominator[#1], Numerator[#1]} &)[
p[{r, z}]] (* A195559, A195560 *)
Sqrt[a^2 + b^2] (* A195561 *)
(* Peter J. C. Moses, Sep 02 2011 *)
A195561
Hypotenuses of primitive Pythagorean triples in A195559 and A195560.
Original entry on oeis.org
1, 5, 109, 289, 1009, 1189, 6485, 141481, 375121, 1309681, 1543321, 8417525, 183642229, 486906769, 1699964929, 2003229469, 10925940965, 238367471761, 632004611041, 2206553168161, 2600190307441, 14181862955045, 309400794703549
Offset: 1
A195562
Denominators a(n) of Pythagorean approximations b(n)/a(n) to 1/4.
Original entry on oeis.org
1, 24, 40, 63, 1600, 2624, 4161, 105560, 173160, 274559, 6965376, 11425920, 18116737, 459609240, 753937576, 1195430079, 30327244480, 49748454080, 78880268481, 2001138526424, 3282644031720, 5204902289663, 132044815499520
Offset: 1
-
Remove["Global`*"];
r = 1/4; z = 26;
p[{f_, n_}] := (#1[[2]]/#1[[
1]] &)[({2 #1[[1]] #1[[2]], #1[[1]]^2 - #1[[
2]]^2} &)[({Numerator[#1], Denominator[#1]} &)[
Array[FromContinuedFraction[
ContinuedFraction[(#1 + Sqrt[1 + #1^2] &)[f], #1]] &, {n}]]]];
{a, b} = ({Denominator[#1], Numerator[#1]} &)[
p[{r, z}]] (* A195562, A195563 *)
Sqrt[a^2 + b^2] (* A195564 *)
(* Peter J. C. Moses, Sep 02 2011 *)
A195565
Denominators a(n) of Pythagorean approximations b(n)/a(n) to 5/4.
Original entry on oeis.org
4, 3, 204, 280, 2280, 12596, 12797, 831996, 1149440, 9341440, 51622404, 52441603, 3409523404, 4710402840, 38281220840, 211548594996, 214905676797, 13972226073596, 19303229690880, 156876433658880, 866926090675204, 880683411072003
Offset: 1
-
r = 5/4; z = 26;
p[{f_, n_}] := (#1[[2]]/#1[[
1]] &)[({2 #1[[1]] #1[[2]], #1[[1]]^2 - #1[[
2]]^2} &)[({Numerator[#1], Denominator[#1]} &)[
Array[FromContinuedFraction[
ContinuedFraction[(#1 + Sqrt[1 + #1^2] &)[f], #1]] &, {n}]]]];
{a, b} = ({Denominator[#1], Numerator[#1]} &)[
p[{r, z}]] (* A195565, A195566 *)
Sqrt[a^2 + b^2] (* A195567 *)
(* by Peter J. C. Moses, Sep 02 2011 *)
A195568
Denominators a(n) of Pythagorean approximations b(n)/a(n) to 7/4.
Original entry on oeis.org
3, 8, 120, 637, 2176, 30848, 164483, 561288, 7958776, 42435837, 144810240, 2053333248, 10948281603, 37360480520, 529752019320, 2824614217597, 9638859164032, 136673967651200, 728739519858563, 2486788303839624, 35261353901990392
Offset: 1
-
r = 7/4; z = 26;
p[{f_, n_}] := (#1[[2]]/#1[[
1]] &)[({2 #1[[1]] #1[[2]], #1[[1]]^2 - #1[[
2]]^2} &)[({Numerator[#1], Denominator[#1]} &)[
Array[FromContinuedFraction[
ContinuedFraction[(#1 + Sqrt[1 + #1^2] &)[f], #1]] &, {n}]]]];
{a, b} = ({Denominator[#1], Numerator[#1]} &)[
p[{r, z}]] (* A195568, A195569 *)
Sqrt[a^2 + b^2] (* A195570 *)
(* Peter J. C. Moses, Sep 02 2011 *)
A195571
Denominators a(n) of Pythagorean approximations b(n)/a(n) to 1/5.
Original entry on oeis.org
1, 40, 60, 99, 4100, 6100, 10101, 418140, 622160, 1030199, 42646200, 63454200, 105070201, 4349494240, 6471706260, 10716130299, 443605766300, 660050584300, 1092940220301, 45243438668340, 67318687892360, 111469186340399, 4614387138404400
Offset: 1
-
r = 1/5; z = 26;
p[{f_, n_}] := (#1[[2]]/#1[[
1]] &)[({2 #1[[1]] #1[[2]], #1[[1]]^2 - #1[[
2]]^2} &)[({Numerator[#1], Denominator[#1]} &)[
Array[FromContinuedFraction[
ContinuedFraction[(#1 + Sqrt[1 + #1^2] &)[f], #1]] &, {n}]]]];
{a, b} = ({Denominator[#1], Numerator[#1]} &)[
p[{r, z}]] (* A195571, A195572 *)
Sqrt[a^2 + b^2] (* A195573 *)
(* Peter J. C. Moses, Sep 02 2011 *)
A195574
Denominators a(n) of Pythagorean approximations b(n)/a(n) to 2/5.
Original entry on oeis.org
1, 12, 651, 5720, 12480, 17549, 236588, 12758199, 112130200, 244626200, 343998201, 4637596612, 250086218851, 2197976167920, 4795162766680, 6743052715749, 90906168553188, 4902190049156399, 43084728731444400, 93994780307828400
Offset: 1
-
r = 2/5; z = 26;
p[{f_, n_}] := (#1[[2]]/#1[[
1]] &)[({2 #1[[1]] #1[[2]], #1[[1]]^2 - #1[[
2]]^2} &)[({Numerator[#1], Denominator[#1]} &)[
Array[FromContinuedFraction[
ContinuedFraction[(#1 + Sqrt[1 + #1^2] &)[f], #1]] &, {n}]]]];
{a, b} = ({Denominator[#1], Numerator[#1]} &)[
p[{r, z}]] (* A195574, A195575 *)
Sqrt[a^2 + b^2] (* A195576 *)
(* Peter J. C. Moses, Sep 02 2011 *)
A195580
Denominators a(n) of Pythagorean approximations b(n)/a(n) to 4/5.
Original entry on oeis.org
4, 600, 2600, 15996, 2460800, 10652800, 65552004, 10084355800, 43655173800, 268632095996, 41325687609600, 178898891577600, 1100854263840004, 169352657739783000, 733127614029833000, 4511300504584239996, 694007150091943126400
Offset: 1
-
r = 4/5; z = 18;
p[{f_, n_}] := (#1[[2]]/#1[[
1]] &)[({2 #1[[1]] #1[[2]], #1[[1]]^2 - #1[[
2]]^2} &)[({Numerator[#1], Denominator[#1]} &)[
Array[FromContinuedFraction[
ContinuedFraction[(#1 + Sqrt[1 + #1^2] &)[f], #1]] &, {n}]]]];
{a, b} = ({Denominator[#1], Numerator[#1]} &)[
p[{r, z}]] (* A195580, A195611 *)
Sqrt[a^2 + b^2] (* A195612 *)
(* Peter J. C. Moses, Sep 02 2011 *)
A195617
Numerators b(n) of Pythagorean approximations b(n)/a(n) to 3.
Original entry on oeis.org
35, 1333, 50615, 1922041, 72986939, 2771581645, 105247115567, 3996618809905, 151766267660819, 5763121552301221, 218846852719785575, 8310417281799550633, 315577009855663138475, 11983615957233399711421, 455061829365013525895519
Offset: 1
-
I:=[35, 1333, 50615]; [n le 3 select I[n] else 37*Self(n-1) +37*Self(n-2) -Self(n-3): n in [1..40]]; // G. C. Greubel, Feb 13 2023
-
Table[(3*LucasL[2*n+1,6] +2*(-1)^n)/20, {n, 40}] (* G. C. Greubel, Feb 13 2023 *)
-
Vec(-x*(x^2-38*x-35)/((x+1)*(x^2-38*x+1)) + O(x^50)) \\ Colin Barker, Jun 04 2015
-
A085447=BinaryRecurrenceSequence(6,1,2,6)
[(3*A085447(2*n+1) + 2*(-1)^n)/20 for n in range(1,41)] # G. C. Greubel, Feb 13 2023
A195619
Denominators of Pythagorean approximations to 4.
Original entry on oeis.org
16, 1040, 68640, 4529184, 298857520, 19720067120, 1301225572416, 85861167712320, 5665535843440720, 373839504499375184, 24667741761115321440, 1627697116729111839840, 107403341962360266108016, 7086992872399048451289200
Offset: 1
-
I:=[16, 1040, 68640]; [n le 3 select I[n] else 65*Self(n-1) +65*Self(n-2) -Self(n-3): n in [1..40]]; // G. C. Greubel, Feb 13 2023
-
r = 4; z = 20;
p[{f_, n_}] := (#1[[2]]/#1[[
1]] &)[({2 #1[[1]] #1[[2]], #1[[1]]^2 - #1[[
2]]^2} &)[({Numerator[#1], Denominator[#1]} &)[
Array[FromContinuedFraction[
ContinuedFraction[(#1 + Sqrt[1 + #1^2] &)[f], #1]] &, {n}]]]];
{a, b} = ({Denominator[#1], Numerator[#1]} &)[
p[{r, z}]] (* A195619, A195620 *)
Sqrt[a^2 + b^2] (* A078988 *)
(* Peter J. C. Moses, Sep 02 2011 *)
Table[(LucasL[2*n+1,8] - 8*(-1)^n)/34, {n,40}] (* G. C. Greubel, Feb 13 2023 *)
LinearRecurrence[{65,65,-1},{16,1040,68640},20] (* Harvey P. Dale, May 01 2023 *)
-
Vec(16*x/((x+1)*(x^2-66*x+1)) + O(x^20)) \\ Colin Barker, Jun 03 2015
-
A078989=BinaryRecurrenceSequence(66,-1,1,67)
[4*(A078989(n) - (-1)^n)/17 for n in range(1,41)] # G. C. Greubel, Feb 13 2023
Comments