cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A006926 Number of connected trivalent graphs with 2n nodes and girth exactly 6.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 1, 5, 32, 385, 7573, 181224, 4624480, 122089998, 3328899586, 93988909755
Offset: 0

Views

Author

Keywords

References

  • CRC Handbook of Combinatorial Designs, 1996, p. 647.
  • Gordon Royle, personal communication.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Connected 3-regular simple graphs with girth exactly g: A198303 (triangle); specified g: A006923 (g=3), A006924 (g=4), A006925 (g=5), this sequence (g=6), A006927 (g=7).
Connected 3-regular simple graphs with girth at least g: A185131 (triangle); A002851 (g=3), A014371 (g=4), A014372 (g=5), A014374 (g=6), A014375 (g=7), A014376 (g=8).

Formula

a(n) = A014374(n) - A014375(n).

Extensions

Definition corrected to include "connected", and "girth at least 6" minus "girth at least 7" formula provided by Jason Kimberley, Dec 12 2009

A006927 Number of connected trivalent graphs with 2n nodes and girth exactly 7.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 3, 21, 545, 30368, 1782839, 95079080, 4686063107
Offset: 0

Views

Author

Keywords

References

  • Gordon Royle, personal communication.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Connected 3-regular simple graphs with girth exactly g: A198303 (triangle); specified g: A006923 (g=3), A006924 (g=4), A006925 (g=5), A006926 (g=6), this sequence (g=7).
Connected 3-regular simple graphs with girth at least g: A002851 (g=3), A014371 (g=4), A014372 (g=5), A014374 (g=6), A014375 (g=7), A014376 (g=8).

Formula

a(n) = A014375(n) - A014376(n).

Extensions

Definition amended to include "connected" (no disconnected yet), and "girth at least 7" minus "girth at least 8" formula provided by Jason Kimberley, Dec 12 2009

A184940 Irregular triangle C(n,g) counting the connected 4-regular simple graphs on n vertices with girth exactly g.

Original entry on oeis.org

1, 1, 2, 5, 1, 16, 0, 57, 2, 263, 2, 1532, 12, 10747, 31, 87948, 220, 803885, 1606, 8020590, 16828, 86027734, 193900, 983417704, 2452818, 11913817317, 32670329, 1, 152352034707, 456028472, 2, 2050055948375, 6636066091, 8, 28466137588780, 100135577616, 131
Offset: 5

Views

Author

Jason Kimberley, Feb 24 2011

Keywords

Comments

The first column is for girth exactly 3. The row length sequence starts: 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4. The row length is incremented to g-2 when n reaches A037233(g).

Examples

			1;
1;
2;
5, 1;
16, 0;
57, 2;
263, 2;
1532, 12;
10747, 31;
87948, 220;
803885, 1606;
8020590, 16828;
86027734, 193900;
983417704, 2452818;
11913817317, 32670329, 1;
152352034707, 456028472, 2;
2050055948375, 6636066091, 8;
28466137588780, 100135577616, 131;
		

Crossrefs

Connected 4-regular simple graphs with girth at least g: A184941 (triangle); chosen g: A006820 (g=3), A033886 (g=4), A058343 (g=5), A058348 (g=6).
Connected 4-regular simple graphs with girth exactly g: this sequence (triangle); chosen g: A184943 (g=3), A184944 (g=4), A184945 (g=5), A184946 (g=6).
Triangular arrays C(n,g) counting connected simple k-regular graphs on n vertices with girth exactly g: A198303 (k=3), this sequence (k=4), A184950 (k=5), A184960 (k=6), A184970 (k=7), A184980 (k=8).

A184980 Irregular triangle C(n,g) counting the connected 8-regular simple graphs on n vertices with girth exactly g.

Original entry on oeis.org

1, 1, 6, 94, 10786, 3459386, 1470293676, 733351105934, 1
Offset: 9

Views

Author

Jason Kimberley, Jan 19 2012

Keywords

Comments

The first column is for girth at least 3. The row length is incremented to g-2 when 2n reaches A054760(8,g).

Examples

			1;
1;
6;
94;
10786;
3459386;
1470293676;
733351105934, 1;
?, 0;
?, 1;
?, 0;
?, 13;
?, 1;
		

Crossrefs

Connected 8-regular simple graphs with girth at least g: A184981 (triangle); chosen g: A014378 (g=3), A181154 (g=4).
Connected 8-regular simple graphs with girth exactly g: this sequence (triangle); chosen g: A184983 (g=3).
Triangular arrays C(n,g) counting connected simple k-regular graphs on n vertices with girth exactly g: A198303 (k=3), A184940 (k=4), A184950 (k=5), A184960 (k=6), A184970 (k=7), this sequence (k=8).

A184950 Irregular triangle C(n,g) counting the connected 5-regular simple graphs on 2n vertices with girth exactly g.

Original entry on oeis.org

1, 3, 59, 1, 7847, 1, 3459376, 7, 2585136287, 388, 2807104844073, 406824
Offset: 3

Views

Author

Jason Kimberley, Feb 24 2011

Keywords

Comments

The first column is for girth exactly 3. The row length sequence starts: 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4. The row length is incremented to g-2 when 2n reaches A054760(5,g).

Examples

			1;
3;
59, 1;
7847, 1;
3459376, 7;
2585136287, 388;
2807104844073, 406824;
?, 1125022325;
?, 3813549359274;
		

Crossrefs

Connected 5-regular simple graphs with girth at least g: A184951 (triangle); chosen g: A006821 (g=3), A058275 (g=4).
Connected 5-regular simple graphs with girth exactly g: this sequence (triangle); chosen g: A184953 (g=3), A184954 (g=4), A184955 (g=5).
Triangular arrays C(n,g) counting connected simple k-regular graphs on n vertices with girth exactly g: A198303 (k=3), A184940 (k=4), this sequence (k=5), A184960 (k=6), A184970 (k=7), A184980 (k=8).

A184960 Irregular triangle C(n,g) read by rows, counting the connected 6-regular simple graphs on n vertices with girth exactly g.

Original entry on oeis.org

1, 1, 4, 21, 266, 7848, 1, 367860, 0, 21609299, 1, 1470293674, 1, 113314233799, 9, 9799685588930, 6
Offset: 7

Views

Author

Jason Kimberley, Feb 24 2011

Keywords

Comments

The first column is for girth exactly 3. The row length sequence starts: 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3. The row length is incremented to g-2 when n reaches A054760(6,g).

Examples

			Triangle begins:
1;
1;
4;
21;
266;
7848, 1;
367860, 0;
21609299, 1;
1470293674, 1;
113314233799, 9;
9799685588930, 6;
?, 267;
?, 3727;
?, 483012;
?, 69823723;
?, 14836130862;
The C(40,5)=1 (see the a-file) graph, the unique (6,5)-cage, is the complement of a Petersen graph inside the Hoffman-Singleton graph [from Brouwer link].
The first known of C(42,5)>=1 graph(s) has automorphism group of order 5040 and these adjacency lists:
1 : 2 3 4 5 6 7
2 : 1 8 9 10 11 12
3 : 1 13 14 15 16 17
4 : 1 18 19 20 21 22
5 : 1 23 24 25 26 27
6 : 1 28 29 30 31 32
7 : 1 33 34 35 36 37
8 : 2 13 18 23 28 38
9 : 2 14 19 24 33 39
10 : 2 15 20 29 34 40
11 : 2 16 25 30 35 41
12 : 2 21 26 31 36 42
13 : 3 8 21 27 34 41
14 : 3 9 26 28 37 40
15 : 3 10 22 25 31 39
16 : 3 11 19 32 36 38
17 : 3 20 23 30 33 42
18 : 4 8 25 32 33 40
19 : 4 9 16 27 29 42
20 : 4 10 17 26 35 38
21 : 4 12 13 30 37 39
22 : 4 15 24 28 36 41
23 : 5 8 17 29 36 39
24 : 5 9 22 30 34 38
25 : 5 11 15 18 37 42
26 : 5 12 14 20 32 41
27 : 5 13 19 31 35 40
28 : 6 8 14 22 35 42
29 : 6 10 19 23 37 41
30 : 6 11 17 21 24 40
31 : 6 12 15 27 33 38
32 : 6 16 18 26 34 39
33 : 7 9 17 18 31 41
34 : 7 10 13 24 32 42
35 : 7 11 20 27 28 39
36 : 7 12 16 22 23 40
37 : 7 14 21 25 29 38
38 : 8 16 20 24 31 37
39 : 9 15 21 23 32 35
40 : 10 14 18 27 30 36
41 : 11 13 22 26 29 33
42 : 12 17 19 25 28 34
		

Crossrefs

Connected 6-regular simple graphs with girth at least g: A184961 (triangle); chosen g: A006822 (g=3), A058276 (g=4).
Connected 6-regular simple graphs with girth exactly g: this sequence (triangle); chosen g: A184963 (g=3), A184964 (g=4).
Triangular arrays C(n,g) counting connected simple k-regular graphs on n vertices with girth exactly g: A198303 (k=3), A184940 (k=4), A184950 (k=5), this sequence (k=6), A184970 (k=7), A184980 (k=8).

Extensions

After approximately 390 processor days of computation with genreg, C(41,5)=0.

A184970 Irregular triangle C(n,g) counting the connected 7-regular simple graphs on 2n vertices with girth exactly g.

Original entry on oeis.org

1, 5, 1547, 21609300, 1, 733351105933, 1
Offset: 4

Views

Author

Jason Kimberley, Feb 25 2011

Keywords

Comments

The first column is for girth exactly 3. The row length sequence starts: 1, 1, 1, 2, 2, 2, 2, 2. The row length is incremented to g-2 when 2n reaches A054760(7,g).

Examples

			1;
5;
1547;
21609300, 1;
733351105933, 1;
?, 8;
?, 741;
?, 2887493;
		

Crossrefs

Connected 7-regular simple graphs with girth at least g: A184971 (triangle); chosen g: A014377 (g=3), A181153 (g=4).
Connected 7-regular simple graphs with girth exactly g: this sequence (triangle); chosen g: A184973 (g=3), A184974 (g=4).
Triangular arrays C(n,g) counting connected simple k-regular graphs on n vertices with girth exactly g: A198303 (k=3), A184940 (k=4), A184950 (k=5), A184960 (k=6), this sequence (k=7), A184980 (k=8).

A210709 Number of trivalent connected simple graphs with 2n nodes and girth at least 9.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 18
Offset: 0

Views

Author

Jason Kimberley, Dec 20 2012

Keywords

Crossrefs

Trivalent simple graphs with girth at least g: A185131 (triangle); chosen g: A002851 (g=3), A014371 (g=4), A014372 (g=5), A014374 (g=6), A014375 (g=7), A014376 (g=8), this sequence (g=9).
Trivalent simple graphs with girth exactly g: A198303 (triangle); chosen g: A006923 (g=3), A006924 (g=4), A006925 (g=5), A006926 (g=6), A006927 (g=7).

Formula

a(29) = a(A000066(9)/2) = A052453(9) = 18 is the number of (3,9) cages.
Previous Showing 11-18 of 18 results.