A006926
Number of connected trivalent graphs with 2n nodes and girth exactly 6.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 1, 1, 5, 32, 385, 7573, 181224, 4624480, 122089998, 3328899586, 93988909755
Offset: 0
- CRC Handbook of Combinatorial Designs, 1996, p. 647.
- Gordon Royle, personal communication.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Definition corrected to include "connected", and "girth at least 6" minus "girth at least 7" formula provided by
Jason Kimberley, Dec 12 2009
A006927
Number of connected trivalent graphs with 2n nodes and girth exactly 7.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 3, 21, 545, 30368, 1782839, 95079080, 4686063107
Offset: 0
- Gordon Royle, personal communication.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Definition amended to include "connected" (no disconnected yet), and "girth at least 7" minus "girth at least 8" formula provided by
Jason Kimberley, Dec 12 2009
A184940
Irregular triangle C(n,g) counting the connected 4-regular simple graphs on n vertices with girth exactly g.
Original entry on oeis.org
1, 1, 2, 5, 1, 16, 0, 57, 2, 263, 2, 1532, 12, 10747, 31, 87948, 220, 803885, 1606, 8020590, 16828, 86027734, 193900, 983417704, 2452818, 11913817317, 32670329, 1, 152352034707, 456028472, 2, 2050055948375, 6636066091, 8, 28466137588780, 100135577616, 131
Offset: 5
1;
1;
2;
5, 1;
16, 0;
57, 2;
263, 2;
1532, 12;
10747, 31;
87948, 220;
803885, 1606;
8020590, 16828;
86027734, 193900;
983417704, 2452818;
11913817317, 32670329, 1;
152352034707, 456028472, 2;
2050055948375, 6636066091, 8;
28466137588780, 100135577616, 131;
Connected 4-regular simple graphs with girth exactly g: this sequence (triangle); chosen g:
A184943 (g=3),
A184944 (g=4),
A184945 (g=5),
A184946 (g=6).
Triangular arrays C(n,g) counting connected simple k-regular graphs on n vertices with girth exactly g:
A198303 (k=3), this sequence (k=4),
A184950 (k=5),
A184960 (k=6),
A184970 (k=7),
A184980 (k=8).
A184980
Irregular triangle C(n,g) counting the connected 8-regular simple graphs on n vertices with girth exactly g.
Original entry on oeis.org
1, 1, 6, 94, 10786, 3459386, 1470293676, 733351105934, 1
Offset: 9
1;
1;
6;
94;
10786;
3459386;
1470293676;
733351105934, 1;
?, 0;
?, 1;
?, 0;
?, 13;
?, 1;
Connected 8-regular simple graphs with girth at least g:
A184981 (triangle); chosen g:
A014378 (g=3),
A181154 (g=4).
Connected 8-regular simple graphs with girth exactly g: this sequence (triangle); chosen g:
A184983 (g=3).
Triangular arrays C(n,g) counting connected simple k-regular graphs on n vertices with girth exactly g:
A198303 (k=3),
A184940 (k=4),
A184950 (k=5),
A184960 (k=6),
A184970 (k=7), this sequence (k=8).
A184950
Irregular triangle C(n,g) counting the connected 5-regular simple graphs on 2n vertices with girth exactly g.
Original entry on oeis.org
1, 3, 59, 1, 7847, 1, 3459376, 7, 2585136287, 388, 2807104844073, 406824
Offset: 3
1;
3;
59, 1;
7847, 1;
3459376, 7;
2585136287, 388;
2807104844073, 406824;
?, 1125022325;
?, 3813549359274;
Connected 5-regular simple graphs with girth at least g:
A184951 (triangle); chosen g:
A006821 (g=3),
A058275 (g=4).
Connected 5-regular simple graphs with girth exactly g: this sequence (triangle); chosen g:
A184953 (g=3),
A184954 (g=4),
A184955 (g=5).
Triangular arrays C(n,g) counting connected simple k-regular graphs on n vertices with girth exactly g:
A198303 (k=3),
A184940 (k=4), this sequence (k=5),
A184960 (k=6),
A184970 (k=7),
A184980 (k=8).
A184960
Irregular triangle C(n,g) read by rows, counting the connected 6-regular simple graphs on n vertices with girth exactly g.
Original entry on oeis.org
1, 1, 4, 21, 266, 7848, 1, 367860, 0, 21609299, 1, 1470293674, 1, 113314233799, 9, 9799685588930, 6
Offset: 7
Triangle begins:
1;
1;
4;
21;
266;
7848, 1;
367860, 0;
21609299, 1;
1470293674, 1;
113314233799, 9;
9799685588930, 6;
?, 267;
?, 3727;
?, 483012;
?, 69823723;
?, 14836130862;
The C(40,5)=1 (see the a-file) graph, the unique (6,5)-cage, is the complement of a Petersen graph inside the Hoffman-Singleton graph [from Brouwer link].
The first known of C(42,5)>=1 graph(s) has automorphism group of order 5040 and these adjacency lists:
1 : 2 3 4 5 6 7
2 : 1 8 9 10 11 12
3 : 1 13 14 15 16 17
4 : 1 18 19 20 21 22
5 : 1 23 24 25 26 27
6 : 1 28 29 30 31 32
7 : 1 33 34 35 36 37
8 : 2 13 18 23 28 38
9 : 2 14 19 24 33 39
10 : 2 15 20 29 34 40
11 : 2 16 25 30 35 41
12 : 2 21 26 31 36 42
13 : 3 8 21 27 34 41
14 : 3 9 26 28 37 40
15 : 3 10 22 25 31 39
16 : 3 11 19 32 36 38
17 : 3 20 23 30 33 42
18 : 4 8 25 32 33 40
19 : 4 9 16 27 29 42
20 : 4 10 17 26 35 38
21 : 4 12 13 30 37 39
22 : 4 15 24 28 36 41
23 : 5 8 17 29 36 39
24 : 5 9 22 30 34 38
25 : 5 11 15 18 37 42
26 : 5 12 14 20 32 41
27 : 5 13 19 31 35 40
28 : 6 8 14 22 35 42
29 : 6 10 19 23 37 41
30 : 6 11 17 21 24 40
31 : 6 12 15 27 33 38
32 : 6 16 18 26 34 39
33 : 7 9 17 18 31 41
34 : 7 10 13 24 32 42
35 : 7 11 20 27 28 39
36 : 7 12 16 22 23 40
37 : 7 14 21 25 29 38
38 : 8 16 20 24 31 37
39 : 9 15 21 23 32 35
40 : 10 14 18 27 30 36
41 : 11 13 22 26 29 33
42 : 12 17 19 25 28 34
Connected 6-regular simple graphs with girth at least g:
A184961 (triangle); chosen g:
A006822 (g=3),
A058276 (g=4).
Connected 6-regular simple graphs with girth exactly g: this sequence (triangle); chosen g:
A184963 (g=3),
A184964 (g=4).
Triangular arrays C(n,g) counting connected simple k-regular graphs on n vertices with girth exactly g:
A198303 (k=3),
A184940 (k=4),
A184950 (k=5), this sequence (k=6),
A184970 (k=7),
A184980 (k=8).
After approximately 390 processor days of computation with genreg, C(41,5)=0.
A184970
Irregular triangle C(n,g) counting the connected 7-regular simple graphs on 2n vertices with girth exactly g.
Original entry on oeis.org
1, 5, 1547, 21609300, 1, 733351105933, 1
Offset: 4
1;
5;
1547;
21609300, 1;
733351105933, 1;
?, 8;
?, 741;
?, 2887493;
Connected 7-regular simple graphs with girth at least g:
A184971 (triangle); chosen g:
A014377 (g=3),
A181153 (g=4).
Connected 7-regular simple graphs with girth exactly g: this sequence (triangle); chosen g:
A184973 (g=3),
A184974 (g=4).
Triangular arrays C(n,g) counting connected simple k-regular graphs on n vertices with girth exactly g:
A198303 (k=3),
A184940 (k=4),
A184950 (k=5),
A184960 (k=6), this sequence (k=7),
A184980 (k=8).
A210709
Number of trivalent connected simple graphs with 2n nodes and girth at least 9.
Original entry on oeis.org
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 18
Offset: 0
Comments