cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A198307 Moore lower bound on the order of a (7,g)-cage.

Original entry on oeis.org

8, 14, 50, 86, 302, 518, 1814, 3110, 10886, 18662, 65318, 111974, 391910, 671846, 2351462, 4031078, 14108774, 24186470, 84652646, 145118822, 507915878, 870712934, 3047495270, 5224277606, 18284971622, 31345665638, 109709829734, 188073993830, 658258978406
Offset: 3

Views

Author

Jason Kimberley, Oct 30 2011

Keywords

Crossrefs

Moore lower bound on the order of a (k,g) cage: A198300 (square); rows: A000027 (k=2), A027383 (k=3), A062318 (k=4), A061547 (k=5), A198306 (k=6), this sequence (k=7), A198308 (k=8), A198309 (k=9), A198310 (k=10), A094626 (k=11); columns: A020725 (g=3), A005843 (g=4), A002522 (g=5), A051890 (g=6), A188377 (g=7).

Programs

  • Mathematica
    DeleteCases[CoefficientList[Series[2 x^3*(4 + 3 x - 6 x^2)/((1 - x) (1 - 6 x^2)), {x, 0, 31}], x], 0] (* Michael De Vlieger, Mar 17 2017 *)
    LinearRecurrence[{1,6,-6},{8,14,50},30] (* or *) CoefficientList[ Series[ -((2 (-4-3 x+6 x^2))/(1-x-6 x^2+6 x^3)),{x,0,30}],x] (* Harvey P. Dale, Aug 03 2021 *)
  • PARI
    Vec(2*x^3*(4 + 3*x - 6*x^2) / ((1 - x)*(1 - 6*x^2)) + O(x^40)) \\ Colin Barker, Mar 17 2017

Formula

a(2*i) = 2*Sum_{j=0..i-1}6^j = string "2"^i read in base 6.
a(2*i+1) = 6^i + 2*Sum_{j=0..i-1}6^j = string "1"*"2"^i read in base 6.
a(n) <= A218555(n).
From Colin Barker, Feb 01 2013: (Start)
a(n) = a(n-1) + 6*a(n-2) - 6*a(n-3) for n>5.
G.f.: 2*x^3*(4 + 3*x - 6*x^2) / ((1 - x)*(1 - 6*x^2)). (End)
From Colin Barker, Mar 17 2017: (Start)
a(n) = 2*(6^(n/2) - 1)/5 for n>2 and even.
a(n) = (7*6^(n/2-1/2) - 2)/5 for n>2 and odd. (End)
E.g.f.: (12*(cosh(sqrt(6)*x) - cosh(x)) + 7*sqrt(6)*sinh(sqrt(6)*x) - 12*sinh(x) - 30*x*(1 + x))/30. - Stefano Spezia, Apr 07 2022

A198308 Moore lower bound on the order of an (8,g)-cage.

Original entry on oeis.org

9, 16, 65, 114, 457, 800, 3201, 5602, 22409, 39216, 156865, 274514, 1098057, 1921600, 7686401, 13451202, 53804809, 94158416, 376633665, 659108914, 2636435657, 4613762400, 18455049601, 32296336802, 129185347209, 226074357616, 904297430465, 1582520503314
Offset: 3

Views

Author

Jason Kimberley, Oct 30 2011

Keywords

Crossrefs

Moore lower bound on the order of a (k,g) cage: A198300 (square); rows: A000027 (k=2), A027383 (k=3), A062318 (k=4), A061547 (k=5), A198306 (k=6), A198307 (k=7), this sequence (k=8), A198309 (k=9), A198310 (k=10), A094626 (k=11); columns: A020725 (g=3), A005843 (g=4), A002522 (g=5), A051890 (g=6), A188377 (g=7).

Programs

  • Mathematica
    LinearRecurrence[{1,7,-7},{9,16,65},40] (* Harvey P. Dale, Oct 14 2019 *)
  • PARI
    Vec(x^3*(9 + 7*x - 14*x^2) / ((1 - x)*(1 - 7*x^2)) + O(x^40)) \\ Colin Barker, Mar 17 2017

Formula

a(2*i) = 2 Sum_{j=0..i-1} 7^j = string "2"^i read in base 7.
a(2*i+1) = 7^i + 2 Sum_{j=0..i-1} 7^j = string "1"*"2"^i read in base 7.
From Colin Barker, Feb 01 2013: (Start)
a(n) = a(n-1) + 7*a(n-2) - 7*a(n-3) for n>5.
G.f.: x^3*(9 + 7*x - 14*x^2) / ((1 - x)*(1 - 7*x^2)). (End)
From Colin Barker, Mar 17 2017: (Start)
a(n) = (7^(n/2) - 1)/3 for n even.
a(n) = (4*7^(n/2-1/2) - 1)/3 for n odd. (End)
E.g.f.: (7*(cosh(sqrt(7)*x) - cosh(x) - sinh(x)) + 4*sqrt(7)*sinh(sqrt(7)*x) - 21*x*(1 + x))/21. - Stefano Spezia, Apr 09 2022

A198309 Moore lower bound on the order of a (9,g)-cage.

Original entry on oeis.org

10, 18, 82, 146, 658, 1170, 5266, 9362, 42130, 74898, 337042, 599186, 2696338, 4793490, 21570706, 38347922, 172565650, 306783378, 1380525202, 2454267026, 11044201618, 19634136210, 88353612946, 157073089682, 706828903570, 1256584717458, 5654631228562
Offset: 3

Views

Author

Jason Kimberley, Oct 30 2011

Keywords

Crossrefs

Moore lower bound on the order of a (k,g) cage: A198300 (square); rows: A000027 (k=2), A027383 (k=3), A062318 (k=4), A061547 (k=5), A198306 (k=6), A198307 (k=7), A198308 (k=8), this sequence (k=9), A198310 (k=10), A094626 (k=11); columns: A020725 (g=3), A005843 (g=4), A002522 (g=5), A051890 (g=6), A188377 (g=7).

Programs

  • Mathematica
    LinearRecurrence[{1,8,-8},{10,18,82},30] (* Harvey P. Dale, Apr 03 2015 *)
  • PARI
    Vec(2*x^3*(5 + 4*x - 8*x^2) / ((1 - x)*(1 - 8*x^2)) + O(x^40)) \\ Colin Barker, Mar 17 2017

Formula

a(2*i) = 2 Sum_{j=0..i-1} 8^j = string "2"^i read in base 8.
a(2*i+1) = 8^i + 2 Sum_{j=0..i-1} 8^j = string "1"*"2"^i read in base 8.
From Colin Barker, Feb 01 2013: (Start)
a(n) = a(n-1) + 8*a(n-2) - 8*a(n-3) for n>5.
G.f.: 2*x^3*(5 + 4*x - 8*x^2) / ((1 - x)*(1 - 8*x^2)). (End)
From Colin Barker, Mar 17 2017: (Start)
a(n) = 2*(2^(3*n/2) - 1)/7 for n even.
a(n) = (9*2^((3*(n-1))/2) - 2)/7 for n odd. (End)
E.g.f.: (8*(cosh(2*sqrt(2)*x) - cosh(x) - sinh(x)) + 9*sqrt(2)*sinh(2*sqrt(2)*x) - 28*x*(1 + x))/28. - Stefano Spezia, Apr 09 2022

A198310 Moore lower bound on the order of a (10,g)-cage.

Original entry on oeis.org

11, 20, 101, 182, 911, 1640, 8201, 14762, 73811, 132860, 664301, 1195742, 5978711, 10761680, 53808401, 96855122, 484275611, 871696100, 4358480501, 7845264902, 39226324511, 70607384120, 353036920601, 635466457082, 3177332285411
Offset: 3

Views

Author

Jason Kimberley, Oct 30 2011

Keywords

Crossrefs

Moore lower bound on the order of a (k,g) cage: A198300 (square); rows: A000027 (k=2), A027383 (k=3), A062318 (k=4), A061547 (k=5), A198306 (k=6), A198307 (k=7), A198308 (k=8), A198309 (k=9), this sequence (k=10), A094626 (k=11); columns: A020725 (g=3), A005843 (g=4), A002522 (g=5), A051890 (g=6), A188377 (g=7).

Programs

Formula

a(2i) = 2*Sum_{j=0..i-1} 9^j = string "2"^i read in base 9.
a(2i+1) = 9^i + 2*Sum_{j=0..i-1} 9^j = string "1"*"2"^i read in base 9.
From Colin Barker, Feb 01 2013: (Start)
a(n) = (-3-(-3)^n+4*3^n)/12.
a(n) = a(n-1)+9*a(n-2)-9*a(n-3).
G.f.: -x^3*(18*x^2-9*x-11) / ((x-1)*(3*x-1)*(3*x+1)). (End)
E.g.f.: (3*(cosh(3*x) - cosh(x) - sinh(x)) + 5*sinh(3*x))/12 - x - x^2. - Stefano Spezia, Apr 09 2022

A191595 Order of smallest n-regular graph of girth 5.

Original entry on oeis.org

5, 10, 19, 30, 40, 50
Offset: 2

Views

Author

N. J. A. Sloane, Jun 07 2011

Keywords

Comments

Current upper bounds for a(8)..a(20) are 80, 96, 124, 154, 203, 230, 288, 312, 336, 448, 480, 512, 576. - Corrected from "Lower" to "Upper" and updated, from Table 4 of the Dynamic cage survey, by Jason Kimberley, Dec 29 2012
Current lower bounds for a(8)..a(20) are 67, 86, 103, 124, 147, 174, 199, 230, 259, 294, 327, 364, 403. - from Table 4 of the Dynamic cage survey via Jason Kimberley, Dec 31 2012

Crossrefs

Orders of cages: A054760 (n,k), A000066 (3,n), A037233 (4,n), A218553 (5,n), A218554 (6,n), A218555 (7,n), this sequence (n,5).
Moore lower bound on the orders of (k,g) cages: A198300 (square); rows: A000027 (k=2), A027383 (k=3), A062318 (k=4), A061547 (k=5), A198306(k=6), A198307 (k=7), A198308 (k=8), A198309 (k=9), A198310 (k=10),A094626 (k=11); columns: A020725 (g=3), A005843 (g=4), A002522 (g=5), A051890 (g=6), A188377 (g=7). - Jason Kimberley, Nov 02 2011

Formula

a(n) >= A002522(n) with equality if and only if n = 2, 3, 7 or possibly 57. - Jason Kimberley, Nov 02 2011

Extensions

a(2) = 5 prepended by Jason Kimberley, Jan 02 2013

A218554 Order of (6,n) cage, i.e., minimal order of 6-regular graph of girth n.

Original entry on oeis.org

7, 12, 40, 62
Offset: 3

Views

Author

Arkadiusz Wesolowski, Nov 02 2012

Keywords

Comments

a(7) <= 294, a(8) = 312, a(12) = 7812. - From Royle's page via Jason Kimberley, Dec 26 2012

Crossrefs

Orders of cages: A054760 (n,k), A000066 (3,n), A037233 (4,n), A218553 (5,n), this sequence (6,n), A218555 (7,n), A191595 (n,5).

Formula

a(n) >= A198306(n).

Extensions

a(7) deleted by Jason Kimberley, Dec 21 2012

A238366 a(n) = 5*a(n-2) + 2, a(0) = 1, a(1) = 2.

Original entry on oeis.org

1, 2, 7, 12, 37, 62, 187, 312, 937, 1562, 4687, 7812, 23437, 39062, 117187, 195312, 585937, 976562, 2929687, 4882812, 14648437, 24414062, 73242187, 122070312, 366210937, 610351562, 1831054687, 3051757812, 9155273437, 15258789062, 45776367187, 76293945312
Offset: 0

Views

Author

Philippe Deléham, Feb 25 2014

Keywords

Comments

Row sums of triangle in A152717.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1,5,-5},{1,2,7},40] (* Harvey P. Dale, Jul 18 2024 *)

Formula

G.f.: (1+x)/((1-x)*(1-5*x^2)).
a(n) = Sum_{k=0..n} A152717(n,k).
a(2*n) = A057651(n).
a(2*n+1) = A125831(n+1) = 2*A003463(n+1).
a(n) = a(n-1) + 5*a(n-2) - 5*a(n-3), a(0) = 1, a(1) = 2, a(2) = 7.
a(n) = A198306(n+1) for n > 1. - Georg Fischer, Oct 23 2018
Previous Showing 11-17 of 17 results.