cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 136 results. Next

A200096 Decimal expansion of greatest x satisfying x^2 - 3*cos(x) = 3*sin(x).

Original entry on oeis.org

1, 6, 5, 4, 6, 9, 9, 7, 8, 2, 2, 9, 3, 9, 0, 1, 0, 7, 1, 1, 3, 1, 6, 8, 6, 6, 8, 1, 8, 3, 0, 8, 0, 0, 6, 3, 5, 4, 6, 5, 9, 6, 8, 5, 5, 6, 7, 0, 3, 5, 0, 6, 3, 0, 7, 5, 3, 8, 7, 7, 2, 4, 0, 1, 0, 7, 0, 3, 8, 7, 2, 6, 4, 8, 7, 7, 0, 4, 0, 0, 3, 7, 8, 7, 1, 8, 7, 6, 8, 5, 2, 5, 7, 6, 2, 3, 7, 1, 4
Offset: 1

Views

Author

Clark Kimberling, Nov 13 2011

Keywords

Comments

See A199949 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least x:  -0.677119411697943130184179520098917021...
greatest x: 1.6546997822939010711316866818308006354...
		

Crossrefs

Cf. A199949.

Programs

  • Mathematica
    a = 1; b = -3; c = 3;
    f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x]
    Plot[{f[x], g[x]}, {x, -3, 3}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, -.88, -.67}, WorkingPrecision -> 110]
    RealDigits[r]  (* A200095 *)
    r = x /. FindRoot[f[x] == g[x], {x, 1.65, 1.66}, WorkingPrecision -> 110]
    RealDigits[r]  (* A200096 *)
  • PARI
    a=1; b=-3; c=3; solve(x=1, 2, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jun 24 2018

A200097 Decimal expansion of least x satisfying x^2 - 3*cos(x) = 4*sin(x), negated.

Original entry on oeis.org

5, 7, 6, 8, 9, 1, 1, 7, 6, 9, 6, 2, 1, 8, 6, 4, 3, 5, 7, 5, 2, 4, 3, 6, 5, 9, 7, 7, 1, 8, 2, 6, 1, 6, 8, 8, 1, 3, 0, 0, 1, 4, 9, 2, 6, 4, 9, 3, 8, 9, 4, 3, 7, 3, 7, 0, 9, 4, 4, 4, 3, 6, 3, 0, 1, 9, 9, 8, 0, 5, 6, 2, 7, 8, 9, 7, 6, 0, 4, 1, 7, 0, 4, 0, 7, 2, 5, 0, 1, 3, 7, 5, 2, 3, 3, 7, 1, 0, 6
Offset: 0

Views

Author

Clark Kimberling, Nov 13 2011

Keywords

Comments

See A199949 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least x:  -0.576891176962186435752436597718261688130...
greatest x: 1.79646741863500842707885236614949093773...
		

Crossrefs

Cf. A199949.

Programs

  • Mathematica
    a = 1; b = -3; c = 4;
    f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x]
    Plot[{f[x], g[x]}, {x, -3, 3}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, -.58, -.57}, WorkingPrecision -> 110]
    RealDigits[r]  (* A200097 *)
    r = x /. FindRoot[f[x] == g[x], {x, 1.79, 1.80}, WorkingPrecision -> 110]
    RealDigits[r]  (* A200098 *)
  • PARI
    a=1; b=-3; c=4; solve(x=-1, 0, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jun 24 2018

A200098 Decimal expansion of greatest x satisfying x^2 - 3*cos(x) = 4*sin(x).

Original entry on oeis.org

1, 7, 9, 6, 4, 6, 7, 4, 1, 8, 6, 3, 5, 0, 0, 8, 4, 2, 7, 0, 7, 8, 8, 5, 2, 3, 6, 6, 1, 4, 9, 4, 9, 0, 9, 3, 7, 7, 3, 8, 6, 0, 8, 3, 6, 2, 1, 3, 7, 1, 9, 9, 8, 4, 1, 8, 1, 9, 2, 1, 5, 3, 1, 6, 9, 4, 3, 4, 1, 7, 4, 7, 5, 9, 0, 5, 3, 9, 8, 9, 7, 9, 9, 3, 1, 0, 0, 7, 7, 3, 9, 4, 9, 0, 9, 4, 3, 3, 5
Offset: 1

Views

Author

Clark Kimberling, Nov 13 2011

Keywords

Comments

See A199949 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least x:  -0.576891176962186435752436597718261688130...
greatest x: 1.79646741863500842707885236614949093773...
		

Crossrefs

Cf. A199949.

Programs

  • Mathematica
    a = 1; b = -3; c = 4;
    f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x]
    Plot[{f[x], g[x]}, {x, -3, 3}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, -.58, -.57}, WorkingPrecision -> 110]
    RealDigits[r]  (* A200097 *)
    r = x /. FindRoot[f[x] == g[x], {x, 1.79, 1.80}, WorkingPrecision -> 110]
    RealDigits[r]  (* A200098 *)
  • PARI
    a=1; b=-3; c=4; solve(x=1, 2, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jun 24 2018

A200099 Decimal expansion of least x satisfying x^2 - 4*cos(x) = sin(x), negated.

Original entry on oeis.org

1, 0, 5, 3, 3, 5, 2, 9, 8, 3, 6, 0, 0, 1, 5, 3, 7, 3, 3, 2, 8, 1, 1, 1, 0, 1, 5, 7, 9, 9, 9, 4, 6, 8, 4, 6, 4, 9, 7, 0, 2, 8, 5, 2, 7, 9, 2, 2, 5, 9, 2, 3, 5, 3, 4, 2, 2, 3, 2, 3, 5, 1, 9, 8, 5, 0, 7, 9, 9, 4, 3, 8, 1, 7, 4, 0, 4, 9, 1, 8, 0, 3, 9, 2, 4, 8, 9, 8, 6, 2, 2, 7, 8, 6, 5, 8, 5, 5, 7
Offset: 1

Views

Author

Clark Kimberling, Nov 13 2011

Keywords

Comments

See A199949 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least x:  -1.053352983600153733281110157999...
greatest x: 1.35457555821585784490890770164646...
		

Crossrefs

Cf. A199949.

Programs

  • Mathematica
    a = 1; b = -4; c = 1;
    f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x]
    Plot[{f[x], g[x]}, {x, -3, 3}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, -1.06, -1.05}, WorkingPrecision -> 110]
    RealDigits[r]  (* A200099 *)
    r = x /. FindRoot[f[x] == g[x], {x, 1.35, 1.36}, WorkingPrecision -> 110]
    RealDigits[r]  (* A200100 *)
  • PARI
    a=1; b=-4; c=1; solve(x=-2, 0, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jun 24 2018

A200100 Decimal expansion of greatest x satisfying x^2 - 4*cos(x) = sin(x).

Original entry on oeis.org

1, 3, 5, 4, 5, 7, 5, 5, 5, 8, 2, 1, 5, 8, 5, 7, 8, 4, 4, 9, 0, 8, 9, 0, 7, 7, 0, 1, 6, 4, 6, 4, 6, 3, 7, 1, 8, 8, 1, 7, 4, 5, 1, 3, 4, 2, 1, 0, 6, 2, 6, 4, 5, 6, 2, 3, 4, 1, 1, 1, 6, 9, 6, 7, 0, 1, 4, 2, 1, 3, 1, 9, 1, 6, 3, 0, 2, 2, 8, 8, 3, 3, 1, 9, 0, 4, 0, 2, 9, 8, 1, 8, 3, 5, 3, 7, 7, 0, 2
Offset: 1

Views

Author

Clark Kimberling, Nov 13 2011

Keywords

Comments

See A199949 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least x:  -1.053352983600153733281110157999...
greatest x: 1.35457555821585784490890770164646...
		

Crossrefs

Cf. A199949.

Programs

  • Mathematica
    a = 1; b = -4; c = 1;
    f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x]
    Plot[{f[x], g[x]}, {x, -3, 3}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, -1.06, -1.05}, WorkingPrecision -> 110]
    RealDigits[r]  (* A200099 *)
    r = x /. FindRoot[f[x] == g[x], {x, 1.35, 1.36}, WorkingPrecision -> 110]
    RealDigits[r]  (* A200100 *)
  • PARI
    a=1; b=-4; c=1; solve(x=1, 2, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jun 24 2018

A200101 Decimal expansion of least x satisfying x^2 - 4*cos(x) = 2*sin(x), negated.

Original entry on oeis.org

9, 1, 7, 7, 0, 1, 3, 1, 5, 8, 3, 1, 6, 0, 0, 4, 7, 5, 1, 7, 0, 5, 2, 4, 3, 9, 0, 9, 5, 3, 9, 2, 1, 4, 8, 7, 7, 1, 8, 1, 9, 6, 1, 1, 6, 8, 5, 9, 0, 0, 5, 7, 1, 1, 5, 1, 0, 0, 4, 8, 9, 0, 0, 2, 2, 4, 8, 9, 4, 4, 8, 7, 9, 0, 0, 7, 1, 1, 5, 4, 2, 2, 3, 0, 2, 3, 3, 9, 9, 7, 4, 4, 0, 5, 8, 6, 8, 6, 8
Offset: 0

Views

Author

Clark Kimberling, Nov 13 2011

Keywords

Comments

See A199949 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least x:  -0.91770131583160047517052439095392148771...
greatest x: 1.50407436560390845625770968131259727...
		

Crossrefs

Cf. A199949.

Programs

  • Mathematica
    a = 1; b = -4; c = 2;
    f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x]
    Plot[{f[x], g[x]}, {x, -3, 3}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, -.92, -.91}, WorkingPrecision -> 110]
    RealDigits[r]  (* A200101 *)
    r = x /. FindRoot[f[x] == g[x], {x, 1.5, 1.6}, WorkingPrecision -> 110]
    RealDigits[r]  (* A200102 *)
  • PARI
    a=1; b=-4; c=2; solve(x=-1, 0, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jun 25 2018

A200102 Decimal expansion of greatest x satisfying x^2 - 4*cos(x) = 2*sin(x).

Original entry on oeis.org

1, 5, 0, 4, 0, 7, 4, 3, 6, 5, 6, 0, 3, 9, 0, 8, 4, 5, 6, 2, 5, 7, 7, 0, 9, 6, 8, 1, 3, 1, 2, 5, 9, 7, 2, 7, 8, 5, 5, 0, 0, 6, 5, 6, 0, 9, 3, 9, 5, 9, 0, 8, 3, 2, 2, 3, 4, 0, 3, 8, 1, 1, 2, 3, 9, 7, 6, 0, 1, 6, 5, 6, 2, 7, 5, 7, 6, 0, 1, 4, 0, 7, 0, 4, 0, 8, 6, 7, 1, 7, 2, 8, 3, 5, 5, 4, 8, 7, 5
Offset: 1

Views

Author

Clark Kimberling, Nov 13 2011

Keywords

Comments

See A199949 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least x:  -0.91770131583160047517052439095392148771...
greatest x: 1.50407436560390845625770968131259727...
		

Crossrefs

Cf. A199949.

Programs

  • Mathematica
    a = 1; b = -4; c = 2;
    f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x]
    Plot[{f[x], g[x]}, {x, -3, 3}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, -.92, -.91}, WorkingPrecision -> 110]
    RealDigits[r]  (* A200101 *)
    r = x /. FindRoot[f[x] == g[x], {x, 1.5, 1.6}, WorkingPrecision -> 110]
    RealDigits[r]  (* A200102 *)
  • PARI
    a=1; b=-4; c=2; solve(x=1, 2, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jun 25 2018

A200103 Decimal expansion of least x satisfying x^2 - 4*cos(x) = 3*sin(x), negated.

Original entry on oeis.org

7, 9, 9, 2, 0, 0, 8, 1, 6, 8, 9, 5, 0, 9, 7, 0, 0, 5, 9, 4, 4, 4, 6, 0, 0, 6, 9, 2, 3, 2, 1, 1, 0, 1, 0, 4, 1, 2, 5, 1, 2, 1, 2, 6, 7, 1, 1, 1, 6, 1, 4, 3, 6, 3, 7, 8, 0, 2, 0, 8, 4, 8, 6, 9, 4, 0, 5, 8, 0, 2, 7, 0, 8, 4, 8, 0, 7, 3, 4, 1, 6, 4, 1, 1, 8, 9, 1, 8, 7, 8, 2, 4, 3, 0, 4, 5, 4, 2, 1
Offset: 0

Views

Author

Clark Kimberling, Nov 13 2011

Keywords

Comments

See A199949 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least x:  -0.79920081689509700594446006923211010...
greatest x: 1.643556567520171656906524761634888...
		

Crossrefs

Cf. A199949.

Programs

  • Mathematica
    a = 1; b = -4; c = 3;
    f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x]
    Plot[{f[x], g[x]}, {x, -3, 3}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, -.8, -.7}, WorkingPrecision -> 110]
    RealDigits[r]  (* A200103 *)
    r = x /. FindRoot[f[x] == g[x], {x, 1.64, 1.65}, WorkingPrecision -> 110]
    RealDigits[r]  (* A200104 *)
  • PARI
    a=1; b=-4; c=3; solve(x=-1, 0, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jun 25 2018

A200104 Decimal expansion of greatest x satisfying x^2 - 4*cos(x) = 3*sin(x).

Original entry on oeis.org

1, 6, 4, 3, 5, 5, 6, 5, 6, 7, 5, 2, 0, 1, 7, 1, 6, 5, 6, 9, 0, 6, 5, 2, 4, 7, 6, 1, 6, 3, 4, 8, 8, 8, 1, 6, 9, 4, 6, 0, 7, 4, 9, 2, 9, 7, 7, 5, 1, 3, 9, 1, 4, 8, 5, 7, 2, 0, 1, 3, 8, 1, 5, 2, 2, 6, 2, 9, 4, 3, 3, 5, 9, 0, 4, 2, 1, 6, 1, 2, 9, 4, 5, 5, 9, 5, 8, 9, 8, 4, 0, 0, 3, 6, 4, 1, 3, 8, 4
Offset: 1

Views

Author

Clark Kimberling, Nov 13 2011

Keywords

Comments

See A199949 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least x:  -0.79920081689509700594446006923211010...
greatest x: 1.643556567520171656906524761634888...
		

Crossrefs

Cf. A199949.

Programs

  • Mathematica
    a = 1; b = -4; c = 3;
    f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x]
    Plot[{f[x], g[x]}, {x, -3, 3}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, -.8, -.7}, WorkingPrecision -> 110]
    RealDigits[r]  (* A200103 *)
    r = x /. FindRoot[f[x] == g[x], {x, 1.64, 1.65}, WorkingPrecision -> 110]
    RealDigits[r]  (* A200104 *)
  • PARI
    a=1; b=-4; c=3; solve(x=1, 2, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jun 25 2018

A200105 Decimal expansion of least x satisfying x^2 - 4*cos(x) = 4*sin(x), negated.

Original entry on oeis.org

6, 9, 8, 9, 3, 3, 6, 0, 4, 7, 3, 2, 9, 0, 3, 3, 0, 9, 3, 3, 7, 9, 8, 9, 5, 4, 4, 7, 3, 3, 5, 6, 7, 9, 5, 6, 2, 3, 3, 5, 7, 2, 4, 8, 5, 1, 5, 7, 6, 1, 0, 5, 7, 8, 0, 2, 5, 6, 9, 3, 4, 7, 2, 6, 5, 4, 9, 7, 8, 8, 3, 8, 4, 7, 5, 3, 2, 4, 6, 6, 6, 4, 5, 4, 3, 4, 0, 8, 3, 2, 6, 4, 0, 4, 9, 2, 3, 4, 3
Offset: 0

Views

Author

Clark Kimberling, Nov 13 2011

Keywords

Comments

See A199949 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least x: -0.698933604732903309337989544733567956233...
greatest x: 1.7695688743727017491150784620016277547...
		

Crossrefs

Cf. A199949.

Programs

  • Mathematica
    a = 1; b = -4; c = 4;
    f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x]
    Plot[{f[x], g[x]}, {x, -3, 3}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, -.7, -.6}, WorkingPrecision -> 110]
    RealDigits[r]  (* A200105 *)
    r = x /. FindRoot[f[x] == g[x], {x, 1.76, 1.77}, WorkingPrecision -> 110]
    RealDigits[r]  (* A200106 *)
  • PARI
    a=1; b=-4; c=4; solve(x=-1, 0, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jun 25 2018
Previous Showing 51-60 of 136 results. Next