cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-19 of 19 results.

A322549 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where A(n,k) is the constant term in the expansion of (Sum_{j=0..n} j*(x^j + x^(-j)))^k.

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 0, 10, 0, 1, 0, 6, 12, 28, 0, 1, 0, 0, 198, 84, 60, 0, 1, 0, 20, 560, 2076, 324, 110, 0, 1, 0, 0, 5020, 14240, 12060, 924, 182, 0, 1, 0, 70, 20580, 213460, 146680, 49170, 2184, 280, 0, 1, 0, 0, 144774, 1984584, 3479700, 922680, 158418, 4536, 408, 0, 1
Offset: 0

Views

Author

Seiichi Manyama, Dec 15 2018

Keywords

Examples

			Square array begins:
   1, 0,   0,    0,      0,       0,         0, ...
   1, 0,   2,    0,      6,       0,        20, ...
   1, 0,  10,   12,    198,     560,      5020, ...
   1, 0,  28,   84,   2076,   14240,    213460, ...
   1, 0,  60,  324,  12060,  146680,   3479700, ...
   1, 0, 110,  924,  49170,  922680,  32108060, ...
   1, 0, 182, 2184, 158418, 4226040, 203474180, ...
		

Crossrefs

Main diagonal gives A318793.
Cf. A201552.

Programs

  • Mathematica
    A[0, 0] = 1; A[n_, k_] :=  Coefficient[Expand[Sum[j * (x^j + x^(-j)), {j, 0, n}]^k], x, 0]; Table[A[n-k, k], {n, 0, 10}, {k, n, 0, -1}] // Flatten (* Amiram Eldar, Dec 16 2018 *)
  • PARI
    T(n,k) = my(t=sum(j=0, n, j*(x^j + x^(-j)))^k); polcoef(numerator(t), poldegree(denominator(t))); \\ Michel Marcus, Dec 17 2018

A201553 Number of arrays of 6 integers in -n..n with sum zero.

Original entry on oeis.org

1, 141, 1751, 9331, 32661, 88913, 204763, 418503, 782153, 1363573, 2248575, 3543035, 5375005, 7896825, 11287235, 15753487, 21533457, 28897757, 38151847, 49638147, 63738149, 80874529, 101513259, 126165719, 155390809, 189797061, 230044751
Offset: 0

Views

Author

R. H. Hardin, Dec 02 2011

Keywords

Comments

Row 6 of A201552.

Examples

			Some solutions for n=5:
..4....5....4...-2...-4....5...-1...-2...-1...-3...-3....0....2...-4....2...-5
..1...-4....5....3....4...-4....1....1....1....0....2...-2....1...-2...-1....1
.-2....3...-5....3....1....0...-4....2...-2....3....3....0....4....3....4....3
.-3...-3...-4....2....2...-3....5....4....4....0...-2....2....0....4...-1...-2
..5....4...-4...-2...-3...-1...-4...-1....1....0...-2....3...-4...-5...-2....4
.-5...-5....4...-4....0....3....3...-4...-3....0....2...-3...-3....4...-2...-1
		

Crossrefs

Cf. A201552.

Programs

  • Mathematica
    a[n_] := Coefficient[Expand[Sum[x^k, {k, 0, 2n}]^6, x], x, 6n]; Array[a, 25, 0] (* Amiram Eldar, Dec 14 2018 *)
  • PARI
    {a(n) = polcoeff((sum(k=0, 2*n, x^k))^6, 6*n, x)} \\ Seiichi Manyama, Dec 14 2018

Formula

Empirical: a(n) = (2*n+1)*(44*n^4+88*n^3+71*n^2+27*n+5)/5.
Empirical formula verified (see link) by Robert Israel, Dec 14 2018.
Empirical: a(n)= integral( (sin((n+1/2)x)/sin(x/2))^6, x=0..Pi)/Pi. - Yalcin Aktar, Dec 03 2011
Conjectures from Colin Barker, May 23 2018: (Start)
G.f.: x*(141 + 905*x + 940*x^2 + 120*x^3 + 7*x^4 - x^5) / (1 - x)^6.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6).
(End)
a(n) = [x^(6*n)] (Sum_{k=0..2*n} x^k)^6. - Seiichi Manyama, Dec 14 2018
E.g.f.: exp(x)*(5 + 700*x + 3675*x^2 + 3750*x^3 + 1100*x^4 + 88*x^5)/5. - Stefano Spezia, Sep 28 2024

Extensions

a(0)=1 prepended by Seiichi Manyama, Dec 14 2018

A201554 Number of arrays of 7 integers in -n..n with sum zero.

Original entry on oeis.org

1, 393, 8135, 60691, 273127, 908755, 2473325, 5832765, 12354469, 24072133, 43874139, 75715487, 124853275, 198105727, 304134769, 453752153, 660249129, 939749665, 1311587215, 1798705035, 2428080047, 3231170251, 4244385685, 5509582933
Offset: 0

Views

Author

R. H. Hardin, Dec 02 2011

Keywords

Comments

Row 7 of A201552.

Examples

			Some solutions for n=3:
..1....3....2....2....3...-2....0...-1...-2....1....0....1...-2...-3....1...-1
..3....2...-3....0...-2...-2....1...-3....1...-2....2....2....3....1....2...-1
.-3...-3....3....2...-2....1...-1....3...-3....3....1....1....0....0...-1....3
.-3...-2....2...-3....0....1....2....2...-1....1...-2...-3...-1....3....0....3
..0....0...-1....3...-1....1....2....1....1....1....1....2...-2...-1....0....2
.-1....0...-1...-1....2....3...-1...-1....1...-1...-2...-1....2....2...-2...-3
..3....0...-2...-3....0...-2...-3...-1....3...-3....0...-2....0...-2....0...-3
		

Crossrefs

Cf. A201552.

Programs

  • Mathematica
    a[n_] := Coefficient[Expand[Sum[x^k, {k, 0, 2n}]^7, x], x, 7n]; Array[a, 25, 0] (* Amiram Eldar, Dec 14 2018 *)
  • PARI
    {a(n) = polcoeff((sum(k=0, 2*n, x^k))^7, 7*n, x)} \\ Seiichi Manyama, Dec 14 2018

Formula

Empirical: a(n) = 1+ 7*n*(n+1)*(841*n^4+1682*n^3+1568*n^2+727*n+222)/180.
Conjectures from Colin Barker, May 23 2018: (Start)
G.f.: (393 + 5384*x + 11999*x^2 + 5370*x^3 + 407*x^4 - 6*x^5 + x^6) / (1 - x)^7. -
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n>7.
(End)
a(n) = [x^(7*n)] (Sum_{k=0..2*n} x^k)^7. - Seiichi Manyama, Dec 14 2018
Barker conjectures confirmed using technique similar to A201553.

Extensions

a(0)=1 prepended by Seiichi Manyama, Dec 14 2018

A322535 Number of arrays of 8 integers in -n..n with sum zero.

Original entry on oeis.org

1, 1107, 38165, 398567, 2306025, 9377467, 30162301, 82073295, 197018321, 429042211, 864287973, 1633586615, 2927984825, 5017519755, 8273550157, 13194953119, 20438495649, 30853690355, 45522444469, 65803811463, 93384154505, 130333031003, 179165107485, 242908414063
Offset: 0

Views

Author

Seiichi Manyama, Dec 14 2018

Keywords

Crossrefs

Row 8 of A201552.

Programs

  • Mathematica
    a[n_] := Coefficient[Expand[Sum[x^k, {k, 0, 2n}]^8, x], x, 8n]; Array[a, 25, 0] (* Amiram Eldar, Dec 14 2018 *)
  • PARI
    {a(n) = polcoeff((sum(k=0, 2*n, x^k))^8, 8*n, x)}

Formula

a(n) = [x^(8*n)] (Sum_{k=0..2*n} x^k)^8.
a(n) = (2*n+1)*(9664*n^6+28992*n^5+37360*n^4+26400*n^3+10936*n^2+2568*n+315)/315.

A322536 Number of arrays of 9 integers in -n..n with sum zero.

Original entry on oeis.org

1, 3139, 180325, 2636263, 19610233, 97464799, 370487485, 1163205475, 3164588407, 7702189345, 17148949027, 35500063501, 69161990275, 128000343121, 226698100687, 386480229085, 637265493637, 1020310909975, 1591418959705, 2424782370859, 3617545938373, 5295169534843
Offset: 0

Views

Author

Seiichi Manyama, Dec 14 2018

Keywords

Crossrefs

Row 9 of A201552.

Programs

  • Mathematica
    a[n_] := Coefficient[Expand[Sum[x^k, {k, 0, 2n}]^9, x], x, 9n]; Array[a, 25, 0] (* Amiram Eldar, Dec 14 2018 *)
  • PARI
    {a(n) = polcoeff((sum(k=0, 2*n, x^k))^9, 9*n, x)}

Formula

a(n) = [x^(9*n)] (Sum_{k=0..2*n} x^k)^9.

A322537 Number of arrays of 10 integers in -n..n with sum zero.

Original entry on oeis.org

1, 8953, 856945, 17538157, 167729959, 1018872811, 4577127763, 16581420835, 51125645317, 139071924069, 342237634221, 775938666273, 1643151128475, 3284313415527, 6247630238079, 11385659856231, 19984965376233, 33936690554865, 55957080110537, 89868204063989, 140950465124591
Offset: 0

Views

Author

Seiichi Manyama, Dec 14 2018

Keywords

Crossrefs

Row 10 of A201552.

Programs

  • Mathematica
    a[n_] := Coefficient[Expand[Sum[x^k, {k, 0, 2n}]^10, x], x, 10n]; Array[a, 25, 0] (* Amiram Eldar, Dec 14 2018 *)
  • PARI
    {a(n) = polcoeff((sum(k=0, 2*n, x^k))^10, 10*n, x)}

Formula

a(n) = [x^(10*n)] (Sum_{k=0..2*n} x^k)^10.

A322538 Number of arrays of n integers in -8..8 with sum zero.

Original entry on oeis.org

1, 1, 17, 217, 3281, 50101, 782153, 12354469, 197018321, 3164588407, 51125645317, 829858058019, 13522838817929, 221088393889403, 3624855419439957, 59576725303913167, 981272544393935569, 16192709833199300337, 267654541150392845543, 4430755975190532983531
Offset: 0

Views

Author

Seiichi Manyama, Dec 14 2018

Keywords

Crossrefs

Column 8 of A201552.

Programs

  • Maple
    seq(add((-1)^k*binomial(n, k)*binomial(9*n-17*k-1, n-1), k = 0..floor(n/2)), n = 0..20); # Peter Bala, Oct 19 2024
  • Mathematica
    a[n_] := If[n==0, 1, Coefficient[Expand[Sum[x^k, {k, 0, 16}]^n], x^(8n)]]; Array[a, 25, 0] (* Amiram Eldar, Dec 14 2018 *)
  • PARI
    {a(n) = polcoeff((sum(k=0, 16, x^k))^n, 8*n, x)}

Formula

a(n) = [x^(8*n)] (Sum_{k=0..16} x^k)^n.
a(n) ~ 17^n / (4*sqrt(3*Pi*n)). - Vaclav Kotesovec, Dec 15 2018

A322539 Number of arrays of n integers in -9..9 with sum zero.

Original entry on oeis.org

1, 1, 19, 271, 4579, 78151, 1363573, 24072133, 429042211, 7702189345, 139071924069, 2522948398895, 45949039890469, 839611990929219, 15385356833972711, 282616668487409521, 5202536118941844771, 95950964483217949751, 1772592132899627652691, 32795665902734099555845
Offset: 0

Views

Author

Seiichi Manyama, Dec 14 2018

Keywords

Crossrefs

Column 9 of A201552.

Programs

  • Maple
    seq(add((-1)^k*binomial(n, k)*binomial(10*n-19*k-1, n-1), k = 0..floor(n/2)), n = 0..20); # Peter Bala, Oct 19 2024
  • Mathematica
    a[n_] := If[n==0, 1, Coefficient[Expand[Sum[x^k, {k, 0, 18}]^n], x^(9n)]]; Array[a, 25, 0] (* Amiram Eldar, Dec 14 2018 *)
  • PARI
    {a(n) = polcoeff((sum(k=0, 18, x^k))^n, 9*n, x)}

Formula

a(n) = [x^(9*n)] (Sum_{k=0..18} x^k)^n.
a(n) ~ 19^n / (2*sqrt(15*Pi*n)). - Vaclav Kotesovec, Dec 15 2018

A322540 Number of arrays of n integers in -10..10 with sum zero.

Original entry on oeis.org

1, 1, 21, 331, 6181, 116601, 2248575, 43874139, 864287973, 17148949027, 342237634221, 6862175029689, 138132246844879, 2789732439723061, 56501091296763855, 1147129435985083731, 23339695295337149925, 475767618472211229549, 9714486212587875804351
Offset: 0

Views

Author

Seiichi Manyama, Dec 14 2018

Keywords

Crossrefs

Column 10 of A201552.

Programs

  • Maple
    seq(add((-1)^k*binomial(n, k)*binomial(11*n-21*k-1, n-1), k = 0..floor(n/2)), n = 0..20); # Peter Bala, Oct 19 2024
  • Mathematica
    a[n_] := If[n==0, 1, Coefficient[Expand[Sum[x^k, {k, 0, 20}]^n], x^(10n)]]; Array[a, 25, 0] (* Amiram Eldar, Dec 14 2018 *)
  • PARI
    {a(n) = polcoeff((sum(k=0, 20, x^k))^n, 10*n, x)}

Formula

a(n) = [x^(10*n)] (Sum_{k=0..20} x^k)^n.
a(n) ~ sqrt(3) * 21^n / (2*sqrt(55*Pi*n)). - Vaclav Kotesovec, Dec 15 2018
Previous Showing 11-19 of 19 results.