A322549
Square array A(n,k), n>=0, k>=0, read by antidiagonals, where A(n,k) is the constant term in the expansion of (Sum_{j=0..n} j*(x^j + x^(-j)))^k.
Original entry on oeis.org
1, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 0, 10, 0, 1, 0, 6, 12, 28, 0, 1, 0, 0, 198, 84, 60, 0, 1, 0, 20, 560, 2076, 324, 110, 0, 1, 0, 0, 5020, 14240, 12060, 924, 182, 0, 1, 0, 70, 20580, 213460, 146680, 49170, 2184, 280, 0, 1, 0, 0, 144774, 1984584, 3479700, 922680, 158418, 4536, 408, 0, 1
Offset: 0
Square array begins:
1, 0, 0, 0, 0, 0, 0, ...
1, 0, 2, 0, 6, 0, 20, ...
1, 0, 10, 12, 198, 560, 5020, ...
1, 0, 28, 84, 2076, 14240, 213460, ...
1, 0, 60, 324, 12060, 146680, 3479700, ...
1, 0, 110, 924, 49170, 922680, 32108060, ...
1, 0, 182, 2184, 158418, 4226040, 203474180, ...
-
A[0, 0] = 1; A[n_, k_] := Coefficient[Expand[Sum[j * (x^j + x^(-j)), {j, 0, n}]^k], x, 0]; Table[A[n-k, k], {n, 0, 10}, {k, n, 0, -1}] // Flatten (* Amiram Eldar, Dec 16 2018 *)
-
T(n,k) = my(t=sum(j=0, n, j*(x^j + x^(-j)))^k); polcoef(numerator(t), poldegree(denominator(t))); \\ Michel Marcus, Dec 17 2018
A201553
Number of arrays of 6 integers in -n..n with sum zero.
Original entry on oeis.org
1, 141, 1751, 9331, 32661, 88913, 204763, 418503, 782153, 1363573, 2248575, 3543035, 5375005, 7896825, 11287235, 15753487, 21533457, 28897757, 38151847, 49638147, 63738149, 80874529, 101513259, 126165719, 155390809, 189797061, 230044751
Offset: 0
Some solutions for n=5:
..4....5....4...-2...-4....5...-1...-2...-1...-3...-3....0....2...-4....2...-5
..1...-4....5....3....4...-4....1....1....1....0....2...-2....1...-2...-1....1
.-2....3...-5....3....1....0...-4....2...-2....3....3....0....4....3....4....3
.-3...-3...-4....2....2...-3....5....4....4....0...-2....2....0....4...-1...-2
..5....4...-4...-2...-3...-1...-4...-1....1....0...-2....3...-4...-5...-2....4
.-5...-5....4...-4....0....3....3...-4...-3....0....2...-3...-3....4...-2...-1
- Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 1..210 from R. H. Hardin) [It was suggested that the initial terms of this b-file were wrong, but in fact they are correct. - _N. J. A. Sloane_, Jan 19 2019]
- Robert Israel, Proof of "empirical" formula.
- Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).
-
a[n_] := Coefficient[Expand[Sum[x^k, {k, 0, 2n}]^6, x], x, 6n]; Array[a, 25, 0] (* Amiram Eldar, Dec 14 2018 *)
-
{a(n) = polcoeff((sum(k=0, 2*n, x^k))^6, 6*n, x)} \\ Seiichi Manyama, Dec 14 2018
A201554
Number of arrays of 7 integers in -n..n with sum zero.
Original entry on oeis.org
1, 393, 8135, 60691, 273127, 908755, 2473325, 5832765, 12354469, 24072133, 43874139, 75715487, 124853275, 198105727, 304134769, 453752153, 660249129, 939749665, 1311587215, 1798705035, 2428080047, 3231170251, 4244385685, 5509582933
Offset: 0
Some solutions for n=3:
..1....3....2....2....3...-2....0...-1...-2....1....0....1...-2...-3....1...-1
..3....2...-3....0...-2...-2....1...-3....1...-2....2....2....3....1....2...-1
.-3...-3....3....2...-2....1...-1....3...-3....3....1....1....0....0...-1....3
.-3...-2....2...-3....0....1....2....2...-1....1...-2...-3...-1....3....0....3
..0....0...-1....3...-1....1....2....1....1....1....1....2...-2...-1....0....2
.-1....0...-1...-1....2....3...-1...-1....1...-1...-2...-1....2....2...-2...-3
..3....0...-2...-3....0...-2...-3...-1....3...-3....0...-2....0...-2....0...-3
- Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 1..210 from R. H. Hardin) [It was suggested that the initial terms of this b-file were wrong, but in fact they are correct. - _N. J. A. Sloane_, Jan 19 2019]
- Index entries for linear recurrences with constant coefficients, signature (7, -21, 35, -35, 21, -7, 1).
-
a[n_] := Coefficient[Expand[Sum[x^k, {k, 0, 2n}]^7, x], x, 7n]; Array[a, 25, 0] (* Amiram Eldar, Dec 14 2018 *)
-
{a(n) = polcoeff((sum(k=0, 2*n, x^k))^7, 7*n, x)} \\ Seiichi Manyama, Dec 14 2018
A322535
Number of arrays of 8 integers in -n..n with sum zero.
Original entry on oeis.org
1, 1107, 38165, 398567, 2306025, 9377467, 30162301, 82073295, 197018321, 429042211, 864287973, 1633586615, 2927984825, 5017519755, 8273550157, 13194953119, 20438495649, 30853690355, 45522444469, 65803811463, 93384154505, 130333031003, 179165107485, 242908414063
Offset: 0
- Seiichi Manyama, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (8, -28, 56, -70, 56, -28, 8, -1).
-
a[n_] := Coefficient[Expand[Sum[x^k, {k, 0, 2n}]^8, x], x, 8n]; Array[a, 25, 0] (* Amiram Eldar, Dec 14 2018 *)
-
{a(n) = polcoeff((sum(k=0, 2*n, x^k))^8, 8*n, x)}
A322536
Number of arrays of 9 integers in -n..n with sum zero.
Original entry on oeis.org
1, 3139, 180325, 2636263, 19610233, 97464799, 370487485, 1163205475, 3164588407, 7702189345, 17148949027, 35500063501, 69161990275, 128000343121, 226698100687, 386480229085, 637265493637, 1020310909975, 1591418959705, 2424782370859, 3617545938373, 5295169534843
Offset: 0
- Seiichi Manyama, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (9, -36, 84, -126, 126, -84, 36, -9, 1).
-
a[n_] := Coefficient[Expand[Sum[x^k, {k, 0, 2n}]^9, x], x, 9n]; Array[a, 25, 0] (* Amiram Eldar, Dec 14 2018 *)
-
{a(n) = polcoeff((sum(k=0, 2*n, x^k))^9, 9*n, x)}
A322537
Number of arrays of 10 integers in -n..n with sum zero.
Original entry on oeis.org
1, 8953, 856945, 17538157, 167729959, 1018872811, 4577127763, 16581420835, 51125645317, 139071924069, 342237634221, 775938666273, 1643151128475, 3284313415527, 6247630238079, 11385659856231, 19984965376233, 33936690554865, 55957080110537, 89868204063989, 140950465124591
Offset: 0
- Seiichi Manyama, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (10, -45, 120, -210, 252, -210, 120, -45, 10, -1).
-
a[n_] := Coefficient[Expand[Sum[x^k, {k, 0, 2n}]^10, x], x, 10n]; Array[a, 25, 0] (* Amiram Eldar, Dec 14 2018 *)
-
{a(n) = polcoeff((sum(k=0, 2*n, x^k))^10, 10*n, x)}
A322538
Number of arrays of n integers in -8..8 with sum zero.
Original entry on oeis.org
1, 1, 17, 217, 3281, 50101, 782153, 12354469, 197018321, 3164588407, 51125645317, 829858058019, 13522838817929, 221088393889403, 3624855419439957, 59576725303913167, 981272544393935569, 16192709833199300337, 267654541150392845543, 4430755975190532983531
Offset: 0
-
seq(add((-1)^k*binomial(n, k)*binomial(9*n-17*k-1, n-1), k = 0..floor(n/2)), n = 0..20); # Peter Bala, Oct 19 2024
-
a[n_] := If[n==0, 1, Coefficient[Expand[Sum[x^k, {k, 0, 16}]^n], x^(8n)]]; Array[a, 25, 0] (* Amiram Eldar, Dec 14 2018 *)
-
{a(n) = polcoeff((sum(k=0, 16, x^k))^n, 8*n, x)}
A322539
Number of arrays of n integers in -9..9 with sum zero.
Original entry on oeis.org
1, 1, 19, 271, 4579, 78151, 1363573, 24072133, 429042211, 7702189345, 139071924069, 2522948398895, 45949039890469, 839611990929219, 15385356833972711, 282616668487409521, 5202536118941844771, 95950964483217949751, 1772592132899627652691, 32795665902734099555845
Offset: 0
-
seq(add((-1)^k*binomial(n, k)*binomial(10*n-19*k-1, n-1), k = 0..floor(n/2)), n = 0..20); # Peter Bala, Oct 19 2024
-
a[n_] := If[n==0, 1, Coefficient[Expand[Sum[x^k, {k, 0, 18}]^n], x^(9n)]]; Array[a, 25, 0] (* Amiram Eldar, Dec 14 2018 *)
-
{a(n) = polcoeff((sum(k=0, 18, x^k))^n, 9*n, x)}
A322540
Number of arrays of n integers in -10..10 with sum zero.
Original entry on oeis.org
1, 1, 21, 331, 6181, 116601, 2248575, 43874139, 864287973, 17148949027, 342237634221, 6862175029689, 138132246844879, 2789732439723061, 56501091296763855, 1147129435985083731, 23339695295337149925, 475767618472211229549, 9714486212587875804351
Offset: 0
-
seq(add((-1)^k*binomial(n, k)*binomial(11*n-21*k-1, n-1), k = 0..floor(n/2)), n = 0..20); # Peter Bala, Oct 19 2024
-
a[n_] := If[n==0, 1, Coefficient[Expand[Sum[x^k, {k, 0, 20}]^n], x^(10n)]]; Array[a, 25, 0] (* Amiram Eldar, Dec 14 2018 *)
-
{a(n) = polcoeff((sum(k=0, 20, x^k))^n, 10*n, x)}
Comments