cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 63 results. Next

A201589 Decimal expansion of least x satisfying 5*x^2 = csc(x) and 0 < x < Pi.

Original entry on oeis.org

5, 9, 6, 6, 2, 6, 8, 1, 9, 8, 6, 0, 7, 0, 4, 5, 4, 6, 7, 6, 1, 8, 3, 2, 8, 5, 9, 0, 8, 2, 1, 4, 1, 0, 4, 8, 3, 0, 3, 6, 5, 3, 1, 0, 0, 8, 7, 0, 2, 9, 3, 0, 5, 7, 4, 4, 7, 1, 8, 2, 0, 4, 7, 7, 5, 8, 3, 7, 4, 7, 8, 6, 0, 6, 4, 1, 9, 9, 1, 6, 3, 4, 1, 9, 4, 0, 7, 6, 9, 5, 4, 7, 5, 8, 8, 9, 5, 2, 2, 7, 8
Offset: 0

Views

Author

Clark Kimberling, Dec 03 2011

Keywords

Comments

See A201564 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least:  0.596626819860704546761832859082141048303653100...
greatest:  3.121059463523827415360175700034092048910749...
		

Crossrefs

Cf. A201564.

Programs

  • Mathematica
    a = 5; c = 0;
    f[x_] := a*x^2 + c; g[x_] := Csc[x]
    Plot[{f[x], g[x]}, {x, 0, Pi}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, .5, .6}, WorkingPrecision -> 110]
    RealDigits[r]   (* A201589 *)
    r = x /. FindRoot[f[x] == g[x], {x, 3.1, 3.14}, WorkingPrecision -> 110]
    RealDigits[r]   (* A201590 *)
  • PARI
    a=5; c=0; solve(x=0.5, 1, a*x^2 + c - 1/sin(x)) \\ G. C. Greubel, Aug 22 2018

Extensions

Terms a(90) onward corrected by G. C. Greubel, Aug 22 2018

A201590 Decimal expansion of greatest x satisfying 5*x^2 = csc(x) and 0 < x < Pi.

Original entry on oeis.org

3, 1, 2, 1, 0, 5, 9, 4, 6, 3, 5, 2, 3, 8, 2, 7, 4, 1, 5, 3, 6, 0, 1, 7, 5, 7, 0, 0, 0, 3, 4, 0, 9, 2, 0, 4, 8, 9, 1, 0, 7, 4, 9, 9, 6, 8, 4, 4, 7, 8, 4, 7, 8, 2, 7, 1, 2, 2, 2, 5, 2, 7, 1, 0, 2, 4, 0, 7, 1, 2, 3, 5, 0, 6, 2, 6, 9, 9, 8, 4, 0, 2, 3, 6, 0, 2, 1, 6, 0, 4, 6, 0, 7, 0, 9, 2, 7, 5, 4, 3
Offset: 1

Views

Author

Clark Kimberling, Dec 03 2011

Keywords

Comments

See A201564 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least:  0.596626819860704546761832859082141048303653100...
greatest:  3.121059463523827415360175700034092048910749...
		

Crossrefs

Cf. A201564.

Programs

  • Mathematica
    a = 5; c = 0;
    f[x_] := a*x^2 + c; g[x_] := Csc[x]
    Plot[{f[x], g[x]}, {x, 0, Pi}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, .5, .6}, WorkingPrecision -> 110]
    RealDigits[r]   (* A201589 *)
    r = x /. FindRoot[f[x] == g[x], {x, 3.1, 3.14}, WorkingPrecision -> 110]
    RealDigits[r]   (* A201590 *)
  • PARI
    a=5; c=0; solve(x=3.1, 3.14, a*x^2 + c - 1/sin(x)) \\ G. C. Greubel, Aug 22 2018

Extensions

Terms a(88) onward corrected by G. C. Greubel, Aug 22 2018

A201591 Decimal expansion of least x satisfying 6*x^2 = csc(x) and 0 < x < Pi.

Original entry on oeis.org

5, 6, 0, 1, 0, 0, 6, 9, 4, 9, 1, 2, 1, 6, 0, 7, 6, 2, 8, 2, 3, 8, 4, 1, 3, 3, 3, 7, 9, 7, 8, 1, 2, 0, 7, 7, 5, 2, 9, 3, 7, 4, 5, 0, 3, 0, 3, 0, 8, 9, 6, 4, 1, 1, 5, 5, 8, 6, 1, 2, 2, 0, 4, 3, 0, 9, 0, 6, 7, 5, 9, 1, 6, 2, 1, 5, 6, 4, 8, 3, 3, 1, 4, 0, 8, 0, 7, 1, 6, 1, 7, 3, 2, 2, 0, 2, 3, 8, 9, 3, 3
Offset: 0

Views

Author

Clark Kimberling, Dec 03 2011

Keywords

Comments

See A201564 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least:  0.56010069491216076282384133379781207752937450...
greatest:  3.12451991250138769396880196501162499414487...
		

Crossrefs

Cf. A201564.

Programs

  • Mathematica
    a = 6; c = 0;
    f[x_] := a*x^2 + c; g[x_] := Csc[x]
    Plot[{f[x], g[x]}, {x, 0, Pi}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, .5, .6}, WorkingPrecision -> 110]
    RealDigits[r]   (* A201591 *)
    r = x /. FindRoot[f[x] == g[x], {x, 3.1, 3.14}, WorkingPrecision -> 110]
    RealDigits[r]   (* A201653 *)
  • PARI
    a=6; c=0; solve(x=0.5, 1, a*x^2 + c - 1/sin(x)) \\ G. C. Greubel, Aug 22 2018

Extensions

Terms a(90) onward corrected by G. C. Greubel, Aug 22 2018

A201653 Decimal expansion of greatest x satisfying 6*x^2 = csc(x) and 0 < x < Pi.

Original entry on oeis.org

3, 1, 2, 4, 5, 1, 9, 9, 1, 2, 5, 0, 1, 3, 8, 7, 6, 9, 3, 9, 6, 8, 8, 0, 1, 9, 6, 5, 0, 1, 1, 6, 2, 4, 9, 9, 4, 1, 4, 4, 8, 7, 8, 6, 3, 8, 0, 3, 1, 2, 5, 4, 7, 4, 3, 5, 3, 6, 7, 5, 6, 7, 1, 9, 1, 1, 5, 1, 2, 3, 6, 6, 8, 1, 2, 3, 6, 1, 2, 8, 1, 1, 4, 9, 6, 9, 6, 4, 8, 0, 0, 1, 1, 1, 0, 0, 4, 6, 9
Offset: 1

Views

Author

Clark Kimberling, Dec 03 2011

Keywords

Comments

See A201564 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least:  0.56010069491216076282384133379781207752937450...
greatest:  3.12451991250138769396880196501162499414487...
		

Crossrefs

Cf. A201564.

Programs

  • Mathematica
    a = 6; c = 0;
    f[x_] := a*x^2 + c; g[x_] := Csc[x]
    Plot[{f[x], g[x]}, {x, 0, Pi}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, .5, .6}, WorkingPrecision -> 110]
    RealDigits[r]   (* A201591 *)
    r = x /. FindRoot[f[x] == g[x], {x, 3.1, 3.14}, WorkingPrecision -> 110]
    RealDigits[r]   (* A201653 *)
  • PARI
    a=6; c=0; solve(x=3, 3.14, a*x^2 + c - 1/sin(x)) \\ G. C. Greubel, Aug 22 2018

A201654 Decimal expansion of least x satisfying 7*x^2 = csc(x) and 0 < x < Pi.

Original entry on oeis.org

5, 3, 1, 0, 9, 3, 7, 8, 3, 2, 2, 8, 7, 7, 5, 5, 6, 9, 5, 4, 2, 4, 5, 4, 2, 6, 2, 8, 7, 2, 7, 2, 8, 7, 8, 8, 1, 2, 7, 0, 9, 7, 3, 8, 1, 6, 4, 0, 0, 6, 1, 0, 9, 0, 6, 3, 7, 8, 1, 0, 4, 1, 5, 3, 4, 8, 0, 6, 2, 2, 0, 8, 4, 6, 0, 4, 4, 8, 5, 0, 5, 1, 0, 5, 1, 5, 6, 1, 0, 9, 2, 0, 6, 1, 2, 7, 1, 3, 4
Offset: 0

Views

Author

Clark Kimberling, Dec 04 2011

Keywords

Comments

See A201564 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least:  0.53109378322877556954245426287272878812709738...
greatest:  3.12698210171419101601393999273016371798979...
		

Crossrefs

Cf. A201564.

Programs

  • Mathematica
    a = 7; c = 0;
    f[x_] := a*x^2 + c; g[x_] := Csc[x]
    Plot[{f[x], g[x]}, {x, 0, Pi}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, .5, .6}, WorkingPrecision -> 110]
    RealDigits[r]   (* A201654 *)
    r = x /. FindRoot[f[x] == g[x], {x, 3.1, 3.14}, WorkingPrecision -> 110]
    RealDigits[r]   (* A201655 *)
  • PARI
    a=7; c=0; solve(x=0.5, 1, a*x^2 + c - 1/sin(x)) \\ G. C. Greubel, Aug 22 2018

A201655 Decimal expansion of greatest x satisfying 7*x^2 = csc(x) and 0 < x < Pi.

Original entry on oeis.org

3, 1, 2, 6, 9, 8, 2, 1, 0, 1, 7, 1, 4, 1, 9, 1, 0, 1, 6, 0, 1, 3, 9, 3, 9, 9, 9, 2, 7, 3, 0, 1, 6, 3, 7, 1, 7, 9, 8, 9, 7, 9, 7, 5, 8, 0, 5, 9, 7, 5, 5, 5, 6, 2, 5, 6, 1, 1, 3, 4, 3, 6, 3, 8, 0, 1, 0, 7, 5, 2, 7, 1, 7, 5, 3, 0, 4, 3, 9, 4, 9, 2, 1, 5, 2, 4, 6, 1, 1, 6, 8, 1, 9, 2, 6, 7, 8, 6, 7
Offset: 1

Views

Author

Clark Kimberling, Dec 04 2011

Keywords

Comments

See A201564 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least:  0.53109378322877556954245426287272878812709738...
greatest:  3.12698210171419101601393999273016371798979...
		

Crossrefs

Cf. A201564.

Programs

  • Mathematica
    a = 7; c = 0;
    f[x_] := a*x^2 + c; g[x_] := Csc[x]
    Plot[{f[x], g[x]}, {x, 0, Pi}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, .5, .6}, WorkingPrecision -> 110]
    RealDigits[r]   (* A201654 *)
    r = x /. FindRoot[f[x] == g[x], {x, 3.1, 3.14}, WorkingPrecision -> 110]
    RealDigits[r]   (* A201655 *)
  • PARI
    a=7; c=0; solve(x=3.1, 3.14, a*x^2 + c - 1/sin(x)) \\ G. C. Greubel, Aug 22 2018

A201656 Decimal expansion of least x satisfying 8*x^2 = csc(x) and 0 < x < Pi.

Original entry on oeis.org

5, 0, 7, 2, 6, 2, 1, 9, 9, 3, 4, 9, 1, 0, 3, 7, 7, 8, 2, 6, 5, 8, 1, 2, 1, 4, 7, 7, 2, 6, 4, 0, 4, 1, 9, 7, 6, 3, 8, 5, 8, 6, 3, 1, 5, 1, 4, 1, 8, 5, 6, 3, 4, 8, 1, 6, 0, 9, 3, 5, 5, 8, 2, 8, 6, 9, 5, 1, 8, 0, 6, 5, 0, 1, 7, 6, 0, 7, 2, 3, 7, 3, 1, 3, 4, 4, 3, 8, 5, 7, 9, 3, 3, 9, 6, 1, 2, 3, 5
Offset: 0

Views

Author

Clark Kimberling, Dec 04 2011

Keywords

Comments

See A201564 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least:  0.507262199349103778265812147726404197638586...
greatest:  3.128823571901654937275752484725028832935...
		

Crossrefs

Cf. A201564.

Programs

  • Mathematica
    a = 8; c = 0;
    f[x_] := a*x^2 + c; g[x_] := Csc[x]
    Plot[{f[x], g[x]}, {x, 0, Pi}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, .5, .6}, WorkingPrecision -> 110]
    RealDigits[r]   (* A201656 *)
    r = x /. FindRoot[f[x] == g[x], {x, 3.1, 3.14}, WorkingPrecision -> 110]
    RealDigits[r]   (* A201657 *)
  • PARI
    a=8; c=0; solve(x=0.5, 1, a*x^2 + c - 1/sin(x)) \\ G. C. Greubel, Aug 22 2018

A201657 Decimal expansion of greatest x satisfying 8*x^2 = csc(x) and 0 < x < Pi.

Original entry on oeis.org

3, 1, 2, 8, 8, 2, 3, 5, 7, 1, 9, 0, 1, 6, 5, 4, 9, 3, 7, 2, 7, 5, 7, 5, 2, 4, 8, 4, 7, 2, 5, 0, 2, 8, 8, 3, 2, 9, 3, 5, 6, 2, 6, 0, 4, 0, 3, 6, 8, 4, 2, 0, 1, 5, 6, 6, 1, 4, 6, 1, 4, 9, 2, 7, 1, 4, 3, 3, 7, 0, 1, 9, 7, 0, 0, 7, 8, 0, 2, 5, 0, 1, 7, 3, 4, 0, 2, 6, 9, 9, 5, 3, 8, 2, 2, 6, 2, 0, 0
Offset: 1

Views

Author

Clark Kimberling, Dec 04 2011

Keywords

Comments

See A201564 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least:  0.507262199349103778265812147726404197638586...
greatest:  3.128823571901654937275752484725028832935...
		

Crossrefs

Cf. A201564.

Programs

  • Mathematica
    a = 8; c = 0;
    f[x_] := a*x^2 + c; g[x_] := Csc[x]
    Plot[{f[x], g[x]}, {x, 0, Pi}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, .5, .6}, WorkingPrecision -> 110]
    RealDigits[r]   (* A201656 *)
    r = x /. FindRoot[f[x] == g[x], {x, 3.1, 3.14}, WorkingPrecision -> 110]
    RealDigits[r]   (* A201657 *)
  • PARI
    a=8; c=0; solve(x=3, 3.14, a*x^2 + c - 1/sin(x)) \\ G. C. Greubel, Aug 23 2018

A201658 Decimal expansion of least x satisfying 9*x^2 = csc(x) and 0 < x < Pi.

Original entry on oeis.org

4, 8, 7, 1, 8, 2, 5, 7, 2, 5, 4, 6, 1, 3, 4, 3, 6, 0, 7, 6, 7, 5, 4, 2, 4, 3, 0, 0, 4, 3, 0, 6, 4, 2, 2, 0, 7, 8, 2, 6, 9, 9, 4, 2, 5, 6, 4, 3, 6, 3, 7, 9, 2, 2, 0, 6, 4, 9, 1, 8, 6, 8, 7, 1, 6, 1, 6, 4, 4, 1, 1, 2, 2, 6, 7, 3, 6, 5, 8, 8, 1, 0, 1, 3, 7, 2, 0, 6, 4, 3, 8, 3, 1, 6, 1, 2, 2, 4, 9, 5
Offset: 0

Views

Author

Clark Kimberling, Dec 04 2011

Keywords

Comments

See A201564 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least:  0.4871825725461343607675424300430642207826...
greatest:  3.1302527861735360350037012277754031636...
		

Crossrefs

Cf. A201564.

Programs

  • Mathematica
    a = 9; c = 0;
    f[x_] := a*x^2 + c; g[x_] := Csc[x]
    Plot[{f[x], g[x]}, {x, 0, Pi}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, .4, .5}, WorkingPrecision -> 110]
    RealDigits[r]    (* A201658 *)
    r = x /. FindRoot[f[x] == g[x], {x, 3.1, 3.14}, WorkingPrecision -> 110]
    RealDigits[r]    (* A201659 *)
  • PARI
    a=9; c=0; solve(x=.4, 1, a*x^2 + c - 1/sin(x)) \\ G. C. Greubel, Sep 11 2018

Extensions

Terms a(89) onward corrected by G. C. Greubel, Sep 11 2018

A201659 Decimal expansion of greatest x satisfying 9*x^2 = csc(x) and 0 < x < Pi.

Original entry on oeis.org

3, 1, 3, 0, 2, 5, 2, 7, 8, 6, 1, 7, 3, 5, 3, 6, 0, 3, 5, 0, 0, 3, 7, 0, 1, 2, 2, 7, 7, 7, 5, 4, 0, 3, 1, 6, 3, 6, 9, 2, 7, 7, 5, 4, 0, 1, 2, 3, 7, 9, 0, 9, 2, 2, 3, 2, 0, 4, 2, 7, 8, 8, 9, 1, 6, 2, 7, 6, 5, 5, 0, 4, 1, 7, 3, 6, 7, 9, 6, 3, 0, 5, 0, 2, 1, 9, 0, 5, 4, 6, 7, 0, 4, 3, 8, 2, 7, 8, 1
Offset: 1

Views

Author

Clark Kimberling, Dec 04 2011

Keywords

Comments

See A201564 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least:  0.4871825725461343607675424300430642207826...
greatest:  3.1302527861735360350037012277754031636...
		

Crossrefs

Cf. A201564.

Programs

  • Mathematica
    a = 9; c = 0;
    f[x_] := a*x^2 + c; g[x_] := Csc[x]
    Plot[{f[x], g[x]}, {x, 0, Pi}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, .4, .5}, WorkingPrecision -> 110]
    RealDigits[r]    (* A201658 *)
    r = x /. FindRoot[f[x] == g[x], {x, 3.1, 3.14}, WorkingPrecision -> 110]
    RealDigits[r]    (* A201659 *)
  • PARI
    a=9; c=0; solve(x=3, 3.14, a*x^2 + c - 1/sin(x)) \\ G. C. Greubel, Sep 11 2018
Previous Showing 21-30 of 63 results. Next