cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 64 results. Next

A201750 Decimal expansion of the nonzero number x satisfying -x^2+1=e^x.

Original entry on oeis.org

7, 1, 4, 5, 5, 6, 3, 8, 4, 7, 4, 3, 0, 0, 9, 6, 8, 1, 6, 0, 1, 4, 4, 9, 1, 2, 6, 4, 3, 4, 3, 6, 2, 8, 8, 7, 5, 9, 6, 4, 9, 7, 9, 3, 8, 6, 6, 3, 8, 3, 0, 8, 2, 6, 9, 5, 5, 9, 1, 7, 6, 9, 5, 3, 2, 2, 4, 5, 9, 4, 5, 5, 2, 9, 0, 1, 6, 8, 9, 7, 1, 8, 1, 2, 6, 3, 6, 6, 2, 2, 7, 8, 6, 3, 9, 1, 5, 7, 7
Offset: 0

Views

Author

Clark Kimberling, Dec 05 2011

Keywords

Comments

See A201741 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			-0.7145563847430096816014491264343628875...
		

Crossrefs

Cf. A201741.

Programs

  • Mathematica
    a = -1; b = 0; c = 1;
    f[x_] := a*x^2 + b*x + c; g[x_] := E^x
    Plot[{f[x], g[x]}, {x, -2, 1}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, -.8, -.7}, WorkingPrecision -> 110]
    RealDigits[r]   (* A201750 *)

A201769 Decimal expansion of the number x satisfying x^2+x=e^x.

Original entry on oeis.org

1, 2, 3, 5, 3, 4, 6, 2, 3, 3, 4, 6, 4, 6, 8, 7, 1, 6, 8, 0, 3, 1, 0, 1, 5, 6, 3, 0, 6, 3, 7, 1, 6, 4, 7, 0, 1, 6, 9, 5, 9, 6, 7, 0, 1, 4, 5, 1, 7, 1, 8, 5, 3, 0, 6, 1, 5, 4, 8, 8, 5, 4, 3, 3, 3, 9, 4, 0, 3, 6, 9, 6, 0, 6, 1, 8, 5, 1, 6, 7, 5, 8, 4, 6, 7, 2, 6, 8, 2, 4, 1, 1, 4, 7, 7, 9, 7, 5, 3
Offset: 1

Views

Author

Clark Kimberling, Dec 05 2011

Keywords

Comments

See A201741 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			x=-1.235346233464687168031015630637164701695...
		

Crossrefs

Cf. A201741.

Programs

  • Mathematica
    a = 1; b = 1; c = 0;
    f[x_] := a*x^2 + b*x + c; g[x_] := E^x
    Plot[{f[x], g[x]}, {x, -2, 2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, -1.3, -1.2}, WorkingPrecision -> 110]
    RealDigits[r]     (* A201769 *)

A201770 Decimal expansion of the nonzero number x satisfying x^2+x+1=e^x.

Original entry on oeis.org

1, 7, 9, 3, 2, 8, 2, 1, 3, 2, 9, 0, 0, 7, 6, 1, 0, 0, 7, 5, 5, 7, 5, 5, 3, 3, 6, 3, 9, 0, 1, 0, 4, 2, 4, 0, 0, 7, 9, 8, 4, 9, 5, 0, 1, 1, 3, 5, 2, 8, 4, 4, 8, 4, 0, 1, 8, 7, 3, 6, 8, 6, 9, 2, 7, 9, 3, 6, 4, 0, 3, 5, 0, 3, 1, 2, 1, 4, 5, 3, 0, 7, 1, 0, 1, 8, 1, 6, 0, 3, 1, 2, 8, 4, 5, 5, 1, 9, 9
Offset: 1

Views

Author

Clark Kimberling, Dec 05 2011

Keywords

Comments

See A201741 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			1.793282132900761007557553363901042400...
		

Crossrefs

Cf. A201741.

Programs

  • Mathematica
    a = 1; b = 1; c = 1;
    f[x_] := a*x^2 + b*x + c; g[x_] := E^x
    Plot[{f[x], g[x]}, {x, -1, 2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, 1.7, 1.8}, WorkingPrecision -> 110]
    RealDigits[r]     (* A201770 *)

A201772 Decimal expansion of the number x satisfying x^2+x+4=e^x.

Original entry on oeis.org

2, 5, 8, 5, 5, 5, 4, 6, 3, 3, 7, 1, 1, 7, 3, 7, 7, 9, 5, 6, 2, 4, 6, 8, 6, 3, 6, 3, 0, 2, 7, 8, 0, 6, 7, 7, 3, 2, 3, 0, 8, 3, 3, 3, 0, 0, 0, 0, 1, 7, 5, 4, 9, 2, 6, 0, 5, 2, 1, 4, 0, 3, 5, 9, 1, 1, 2, 8, 2, 4, 2, 8, 7, 0, 2, 2, 1, 9, 0, 7, 6, 1, 4, 0, 1, 3, 8, 0, 9, 7, 5, 8, 6, 7, 0, 3, 6, 2, 6
Offset: 1

Views

Author

Clark Kimberling, Dec 06 2011

Keywords

Comments

See A201741 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			2.58555463371173779562468636302780677323083330000...
		

Crossrefs

Cf. A201741.

Programs

  • Mathematica
    a = 1; b = 1; c = 4;
    f[x_] := a*x^2 + b*x + c; g[x_] := E^x
    Plot[{f[x], g[x]}, {x, -1, 3}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, 2.5, 2.6}, WorkingPrecision -> 110]
    RealDigits[r]     (* A201772 *)

A201889 Decimal expansion of the number x satisfying x^2+x+5=e^x.

Original entry on oeis.org

2, 7, 1, 2, 8, 7, 7, 1, 8, 7, 0, 3, 7, 3, 1, 9, 6, 0, 2, 2, 1, 8, 8, 0, 5, 3, 4, 8, 5, 3, 9, 2, 0, 4, 5, 1, 3, 5, 6, 9, 4, 1, 1, 8, 2, 9, 2, 0, 2, 7, 8, 1, 6, 4, 2, 4, 8, 4, 1, 1, 0, 6, 6, 1, 5, 4, 4, 0, 8, 9, 5, 0, 4, 4, 1, 7, 7, 2, 6, 2, 7, 5, 5, 4, 3, 6, 6, 4, 3, 7, 2, 2, 9, 7, 2, 4, 2, 8, 5
Offset: 1

Views

Author

Clark Kimberling, Dec 06 2011

Keywords

Comments

See A201741 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			2.71287718703731960221880534853920451356941...
		

Crossrefs

Cf. A201741.

Programs

  • Mathematica
    a = 1; b = 1; c = 5;
    f[x_] := a*x^2 + b*x + c; g[x_] := E^x
    Plot[{f[x], g[x]}, {x, -1, 3}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, 2.7, 2.8}, WorkingPrecision -> 110]
    RealDigits[r]     (* A201889 *)

A201891 Decimal expansion of the number x satisfying x^2+2x+2=e^x.

Original entry on oeis.org

2, 6, 7, 4, 0, 6, 0, 3, 1, 3, 7, 2, 3, 5, 6, 0, 3, 1, 7, 9, 1, 3, 4, 5, 7, 2, 6, 4, 5, 9, 1, 6, 9, 4, 9, 8, 9, 6, 2, 2, 7, 8, 7, 7, 9, 5, 0, 2, 7, 8, 2, 2, 2, 7, 8, 0, 8, 7, 7, 1, 8, 8, 1, 8, 1, 3, 7, 5, 6, 5, 5, 4, 9, 1, 6, 9, 9, 1, 8, 5, 7, 6, 4, 4, 5, 2, 1, 7, 4, 9, 5, 3, 8, 3, 5, 8, 2, 4, 7
Offset: 1

Views

Author

Clark Kimberling, Dec 06 2011

Keywords

Comments

See A201741 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			x=2.674060313723560317913457264591694989622787...
		

Crossrefs

Cf. A201741.

Programs

  • Mathematica
    a = 1; b = 2; c = 2;
    f[x_] := a*x^2 + b*x + c; g[x_] := E^x
    Plot[{f[x], g[x]}, {x, -2, 3}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, 2.6, 2.7}, WorkingPrecision -> 110]
    RealDigits[r]    (* A201891 *)

A201892 Decimal expansion of the number x satisfying x^2+2x+3=e^x.

Original entry on oeis.org

2, 7, 9, 9, 4, 7, 4, 3, 9, 7, 7, 8, 6, 3, 8, 9, 6, 6, 7, 2, 6, 0, 6, 1, 6, 0, 6, 1, 8, 3, 3, 5, 5, 8, 3, 6, 8, 3, 2, 8, 4, 8, 2, 3, 5, 5, 9, 9, 8, 2, 5, 3, 0, 5, 7, 5, 6, 4, 9, 0, 7, 6, 7, 9, 1, 6, 5, 6, 8, 0, 5, 9, 1, 9, 3, 7, 0, 4, 5, 2, 8, 4, 4, 6, 8, 9, 4, 1, 1, 9, 3, 9, 5, 3, 3, 5, 6, 9, 7
Offset: 1

Views

Author

Clark Kimberling, Dec 06 2011

Keywords

Comments

See A201741 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			x=2.79947439778638966726061606183355836832848235599...
		

Crossrefs

Cf. A201741.

Programs

  • Mathematica
    a = 1; b = 2; c = 3;
    f[x_] := a*x^2 + b*x + c; g[x_] := E^x
    Plot[{f[x], g[x]}, {x, -2, 3}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, 2.7, 2.8}, WorkingPrecision -> 110]
    RealDigits[r]     (* A201892 *)

A201893 Decimal expansion of the number x satisfying x^2+2x+4=e^x.

Original entry on oeis.org

2, 9, 0, 3, 4, 4, 6, 8, 7, 9, 0, 2, 6, 8, 9, 6, 8, 5, 8, 2, 8, 6, 8, 8, 8, 1, 7, 7, 0, 3, 4, 0, 7, 5, 9, 0, 0, 8, 3, 0, 0, 2, 7, 4, 7, 7, 9, 1, 2, 3, 0, 6, 5, 8, 7, 9, 5, 5, 4, 5, 5, 0, 5, 4, 2, 6, 8, 5, 3, 7, 2, 7, 7, 1, 4, 1, 4, 2, 9, 3, 1, 2, 3, 9, 7, 1, 8, 5, 4, 4, 1, 7, 7, 4, 4, 3, 2, 3, 0
Offset: 1

Views

Author

Clark Kimberling, Dec 06 2011

Keywords

Comments

See A201741 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			x=2.9034468790268968582868881770340759008300...
		

Crossrefs

Cf. A201741.

Programs

  • Mathematica
    a = 1; b = 2; c = 4;
    f[x_] := a*x^2 + b*x + c; g[x_] := E^x
    Plot[{f[x], g[x]}, {x, -2, 3}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, 2.9, 3.0}, WorkingPrecision -> 110]
    RealDigits[r]    (* A201893 *)

A201894 Decimal expansion of the number x satisfying x^2 + 2x + 5 = e^x.

Original entry on oeis.org

2, 9, 9, 2, 8, 8, 4, 5, 9, 0, 3, 3, 8, 2, 0, 4, 4, 1, 9, 1, 1, 4, 5, 3, 4, 9, 0, 7, 8, 3, 2, 3, 3, 4, 2, 3, 3, 7, 0, 4, 0, 2, 3, 8, 2, 1, 1, 3, 1, 1, 5, 8, 6, 6, 1, 4, 0, 7, 2, 3, 0, 5, 7, 1, 5, 9, 5, 0, 8, 5, 3, 4, 7, 4, 3, 6, 9, 2, 3, 8, 8, 6, 2, 6, 2, 8, 3, 7, 8, 9, 1, 6, 5, 3, 2, 9, 8, 0, 9, 7
Offset: 1

Views

Author

Clark Kimberling, Dec 06 2011

Keywords

Comments

See A201741 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			2.9928845903382044191145349078323342337040238211311...
		

Crossrefs

Cf. A201741.

Programs

  • Mathematica
    a = 1; b = 2; c = 5;
    f[x_] := a*x^2 + b*x + c; g[x_] := E^x
    Plot[{f[x], g[x]}, {x, -2, 4}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, 2.9, 3.0}, WorkingPrecision -> 110]
    RealDigits[r]    (* A201894 *)

Extensions

a(85) onwards corrected by Georg Fischer, Aug 03 2021

A201896 Decimal expansion of the greatest x satisfying x^2 + 3*x + 1 = e^x.

Original entry on oeis.org

2, 8, 9, 3, 1, 1, 6, 4, 3, 0, 9, 2, 5, 2, 7, 1, 2, 2, 0, 3, 1, 5, 5, 3, 4, 9, 3, 1, 3, 4, 9, 5, 3, 0, 8, 8, 5, 3, 0, 4, 0, 7, 9, 0, 9, 1, 5, 4, 6, 9, 7, 7, 4, 0, 1, 8, 2, 1, 6, 3, 4, 9, 2, 8, 1, 6, 6, 5, 5, 3, 6, 6, 0, 7, 8, 3, 3, 7, 3, 0, 5, 1, 9, 0, 8, 9, 2, 1, 0, 2, 3, 8, 8, 7, 1, 7, 3, 4, 9
Offset: 1

Views

Author

Clark Kimberling, Dec 06 2011

Keywords

Comments

See A201741 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least:  -2.649219887767292965348496137953408152796...
greatest:  2.8931164309252712203155349313495308853...
		

Crossrefs

Cf. A201741.

Programs

  • Mathematica
    a = 1; b = 3; c = 1;
    f[x_] := a*x^2 + b*x + c; g[x_] := E^x
    Plot[{f[x], g[x]}, {x, -4, 4}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, -2.7, -2.6}, WorkingPrecision -> 110]
    RealDigits[r]     (* A201895 *)
    r = x /. FindRoot[f[x] == g[x], {x, 2.9, 3.0}, WorkingPrecision -> 110]
    RealDigits[r]     (* A201896 *)  (* NOTE 3 zeros *)

Extensions

a(98) onwards corrected by Georg Fischer, Aug 03 2021
Previous Showing 51-60 of 64 results. Next