cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 64 results. Next

A204006 Symmetric matrix based on f(i,j) = min{2i+j-2,i+2j-2}, by antidiagonals.

Original entry on oeis.org

1, 2, 2, 3, 4, 3, 4, 5, 5, 4, 5, 6, 7, 6, 5, 6, 7, 8, 8, 7, 6, 7, 8, 9, 10, 9, 8, 7, 8, 9, 10, 11, 11, 10, 9, 8, 9, 10, 11, 12, 13, 12, 11, 10, 9, 10, 11, 12, 13, 14, 14, 13, 12, 11, 10, 11, 12, 13, 14, 15, 16, 15, 14, 13, 12, 11, 12, 13, 14, 15, 16, 17, 17, 16, 15, 14, 13, 12
Offset: 1

Views

Author

Clark Kimberling, Jan 09 2012

Keywords

Comments

A204006 represents the matrix M given by f(i,j) = min{2i+j,i+2j} for i>=1 and j>=1. See A204007 for characteristic polynomials of principal submatrices of M, with interlacing zeros.

Examples

			Northwest corner:
1...2...3...4....5....6
2...4...5...6....7....8
3...5...7...8....9....10
4...6...8...10...11...12
		

Crossrefs

Programs

  • Mathematica
    f[i_, j_] := Min[2 i + j - 2, 2 j + i - 2];
    m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}]
    TableForm[m[6]] (* 6x6 principal submatrix *)
    Flatten[Table[f[i, n + 1 - i],
    {n, 1, 12}, {i, 1, n}]]   (* A204006 *)
    p[n_] := CharacteristicPolynomial[m[n], x];
    c[n_] := CoefficientList[p[n], x]
    TableForm[Flatten[Table[p[n], {n, 1, 10}]]]
    Table[c[n], {n, 1, 12}]
    Flatten[%]                (* A204007 *)
    TableForm[Table[c[n], {n, 1, 10}]]

A204012 Symmetric matrix based on f(i,j)=min{3i+j-3,i+3j-3}, by antidiagonals.

Original entry on oeis.org

1, 2, 2, 3, 5, 3, 4, 6, 6, 4, 5, 7, 9, 7, 5, 6, 8, 10, 10, 8, 6, 7, 9, 11, 13, 11, 9, 7, 8, 10, 12, 14, 14, 12, 10, 8, 9, 11, 13, 15, 17, 15, 13, 11, 9, 10, 12, 14, 16, 18, 18, 16, 14, 12, 10, 11, 13, 15, 17, 19, 21, 19, 17, 15, 13, 11, 12, 14, 16, 18, 20, 22, 22, 20, 18
Offset: 1

Views

Author

Clark Kimberling, Jan 10 2012

Keywords

Comments

A204012 represents the matrix M given by f(i,j)=max{3i+j-3,i+3j-3}for i>=1 and j>=1. See A204013 for characteristic polynomials of principal submatrices of M, with interlacing zeros.

Examples

			Northwest corner:
1....2....3....4....5....6
2....5....6....7....8....9
3....6....9....10...11...12
4....7....10...13...14...15
		

Crossrefs

Programs

  • Mathematica
    f[i_, j_] := Min[3 i + j - 3, 3 j + i - 3];
    m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}]
    TableForm[m[6]] (* 6x6 principal submatrix *)
    Flatten[Table[f[i, n + 1 - i],
    {n, 1, 12}, {i, 1, n}]]   (* A204012 *)
    p[n_] := CharacteristicPolynomial[m[n], x];
    c[n_] := CoefficientList[p[n], x]
    TableForm[Flatten[Table[p[n], {n, 1, 10}]]]
    Table[c[n], {n, 1, 12}]
    Flatten[%]  (* A204013 *)
    TableForm[Table[c[n], {n, 1, 10}]]

A204014 Symmetric matrix based by antidiagonals, based on f(i,j)=min{1+(j mod i), 1+( i mod j)}.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 3, 1, 3, 1, 1, 1, 2, 1, 2, 2, 1, 2, 1, 1, 1, 2, 3, 1, 3, 2, 1, 1, 1, 2, 3, 4, 2, 2, 4, 3, 2, 1, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1, 1, 1, 2, 2, 2, 4, 2, 2, 4, 2, 2, 2, 1, 1, 1, 3, 3, 5, 3, 1, 3, 5, 3, 3, 1, 1, 1, 2, 1, 4, 1, 4, 2, 2
Offset: 1

Views

Author

Clark Kimberling, Jan 10 2012

Keywords

Comments

A204014 represents the matrix M given by f(i,j)=min{1+(j mod i), 1+( i mod j)} for i>=1 and j>=1. See A204015 for characteristic polynomials of principal submatrices of M, with interlacing zeros.

Examples

			Northwest corner:
1 1 1 1 1 1
1 1 2 1 2 1
1 2 1 2 3 1
1 1 2 1 2 3
1 2 3 2 1 2
		

Crossrefs

Programs

  • Mathematica
    f[i_, j_] := Min[1 + Mod[i, j], 1 + Mod[j, i]];
    m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}]
    TableForm[m[6]] (* 6x6 principal submatrix *)
    Flatten[Table[f[i, n + 1 - i],
    {n, 1, 12}, {i, 1, n}]]  (* A204014 *)
    p[n_] := CharacteristicPolynomial[m[n], x];
    c[n_] := CoefficientList[p[n], x]
    TableForm[Flatten[Table[p[n], {n, 1, 10}]]]
    Table[c[n], {n, 1, 12}]
    Flatten[%]               (* A204015 *)
    TableForm[Table[c[n], {n, 1, 10}]]

A204018 Symmetric matrix based on f(i,j)=1+max(j mod i, i mod j), by antidiagonals.

Original entry on oeis.org

1, 2, 2, 2, 1, 2, 2, 3, 3, 2, 2, 3, 1, 3, 2, 2, 3, 4, 4, 3, 2, 2, 3, 4, 1, 4, 3, 2, 2, 3, 4, 5, 5, 4, 3, 2, 2, 3, 4, 5, 1, 5, 4, 3, 2, 2, 3, 4, 5, 6, 6, 5, 4, 3, 2, 2, 3, 4, 5, 6, 1, 6, 5, 4, 3, 2, 2, 3, 4, 5, 6, 7, 7, 6, 5, 4, 3, 2, 2, 3, 4, 5, 6, 7, 1, 7, 6, 5, 4, 3, 2, 2, 3, 4, 5, 6, 7, 8, 8
Offset: 1

Views

Author

Clark Kimberling, Jan 11 2012

Keywords

Comments

A204018 represents the matrix M given by f(i,j)=max{1+(j mod i), 1+( i mod j)} for i>=1 and j>=1. See A204019 for characteristic polynomials of principal submatrices of M, with interlacing zeros. See A204016 for a guide to other choices of M.

Examples

			Northwest corner:
1 2 2 2 2 2
2 1 3 3 3 3
2 3 1 4 4 4
2 3 4 1 5 5
2 3 4 5 1 6
2 3 4 5 6 1
		

Crossrefs

Programs

  • Mathematica
    f[i_, j_] := 1 + Max[Mod[i, j], Mod[j, i]];
    m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}]
    TableForm[m[6]] (* 6x6 principal submatrix *)
    Flatten[Table[f[i, n + 1 - i],
      {n, 1, 15}, {i, 1, n}]]   (* A204018 *)
    p[n_] := CharacteristicPolynomial[m[n], x];
    c[n_] := CoefficientList[p[n], x]
    TableForm[Flatten[Table[p[n], {n, 1, 10}]]]
    Table[c[n], {n, 1, 12}]
    Flatten[%]                  (* A204019 *)
    TableForm[Table[c[n], {n, 1, 10}]]

A204030 Symmetric matrix based on f(i,j) = gcd(i+1, j+1), by antidiagonals.

Original entry on oeis.org

2, 1, 1, 2, 3, 2, 1, 1, 1, 1, 2, 1, 4, 1, 2, 1, 3, 1, 1, 3, 1, 2, 1, 2, 5, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 1, 6, 1, 4, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 7, 2, 1, 2, 1, 2, 1, 3, 1, 5, 3, 1, 1, 3, 5, 1, 3, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Clark Kimberling, Jan 11 2012

Keywords

Comments

A204030 represents the matrix M given by f(i,j) = gcd(i+1, j+1) for i >= 1 and j >= 1. See A204031 for characteristic polynomials of principal submatrices of M, with interlacing zeros. See A204016 for a guide to other choices of M.

Examples

			Northwest corner:
  2 1 2 1 2 1 2 1
  1 3 1 1 3 1 1 3
  2 1 4 1 2 1 4 1
  1 1 1 5 1 1 1 1
  2 3 2 1 6 1 2 3
  1 1 1 1 1 7 1 1
		

Crossrefs

Programs

  • Mathematica
    f[i_, j_] := GCD[i + 1, j + 1];
    m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}]
    TableForm[m[8]] (* 8 X 8 principal submatrix *)
    Flatten[Table[f[i, n + 1 - i],
      {n, 1, 15}, {i, 1, n}]]  (* A204030 *)
    p[n_] := CharacteristicPolynomial[m[n], x];
    c[n_] := CoefficientList[p[n], x]
    TableForm[Flatten[Table[p[n], {n, 1, 10}]]]
    Table[c[n], {n, 1, 12}]
    Flatten[%]                 (* A204111 *)
    TableForm[Table[c[n], {n, 1, 10}]]

A204112 Symmetric matrix based on f(i,j) = gcd(F(i+1), F(j+1)), where F=A000045 (Fibonacci numbers), by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 8, 1, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 13, 1, 1, 1, 1, 1, 1, 2, 1, 5, 2, 1, 1, 2, 5, 1, 2, 1, 1, 1, 3, 1, 1, 1, 21, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Clark Kimberling, Jan 11 2012

Keywords

Comments

A204112 represents the matrix M given by f(i,j) = gcd(F(i+1), F(j+1)) for i >= 1 and j >= 1. See A204113 for characteristic polynomials of principal submatrices of M, with interlacing zeros. See A204016 for a guide to other choices of M.

Examples

			Northwest corner:
  1  1  1  1  1  1
  1  2  1  1  2  1
  1  1  3  1  1  1
  1  1  1  5  1  1
  1  2  1  1  8  1
  1  1  1  1  1 13
		

Crossrefs

Programs

  • Mathematica
    u[n_] := Fibonacci[n + 1]
    f[i_, j_] := GCD[u[i], u[j]];
    m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}]
    TableForm[m[8]] (* 8 X 8 principal submatrix *)
    Flatten[Table[f[i, n + 1 - i],
      {n, 1, 15}, {i, 1, n}]]    (* A204112 *)
    p[n_] := CharacteristicPolynomial[m[n], x];
    c[n_] := CoefficientList[p[n], x]
    TableForm[Flatten[Table[p[n], {n, 1, 10}]]]
    Table[c[n], {n, 1, 12}]
    Flatten[%]                   (* A204113 *)
    TableForm[Table[c[n], {n, 1, 10}]]

A204114 Symmetric matrix based on f(i,j) = gcd(L(i), L(j)), where L=A000032 (Lucas numbers), by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 7, 1, 3, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 11, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 4, 1, 1, 18, 1, 1, 4, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 29, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1
Offset: 1

Views

Author

Clark Kimberling, Jan 11 2012

Keywords

Comments

A204114 represents the matrix M given by f(i,j) = gcd(L(i+1), L(j+1)) for i >= 1 and j >= 1. See A204115 for characteristic polynomials of principal submatrices of M, with interlacing zeros. See A204016 for a guide to other choices of M.

Examples

			Northwest corner:
  1  1  1  1  1
  1  3  1  1  1
  1  1  4  1  1
  1  1  1  7  1
  1  1  1  1 11
		

Crossrefs

Programs

  • Mathematica
    u[n_] := LucasL[n]
    f[i_, j_] := GCD[u[i], u[j]];
    m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}]
    TableForm[m[8]] (* 8 X 8 principal submatrix *)
    Flatten[Table[f[i, n + 1 - i],
      {n, 1, 15}, {i, 1, n}]]    (* A204114 *)
    p[n_] := CharacteristicPolynomial[m[n], x];
    c[n_] := CoefficientList[p[n], x]
    TableForm[Flatten[Table[p[n], {n, 1, 10}]]]
    Table[c[n], {n, 1, 12}]
    Flatten[%]                   (* A204115 *)
    TableForm[Table[c[n], {n, 1, 10}]]

A204116 Symmetric matrix based on f(i,j) = gcd(2^i-1, 2^j-1), by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 3, 7, 3, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 15, 1, 3, 1, 1, 1, 7, 1, 1, 7, 1, 1, 1, 3, 1, 3, 31, 3, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 7, 15, 1, 63, 1, 15, 7, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 3, 1, 3, 127, 3, 1, 3, 1, 3, 1, 1, 1, 7, 1
Offset: 1

Views

Author

Clark Kimberling, Jan 11 2012

Keywords

Comments

A204116 represents the matrix M given by f(i,j) = gcd(2^i-1, 2^j-1) for i >= 1 and j >= 1. See A204117 for characteristic polynomials of principal submatrices of M, with interlacing zeros. See A204016 for a guide to other choices of M.

Examples

			Northwest corner:
  1  1  1  1
  1  3  1  3
  1  1  7  1
  1  3  1 15
		

Crossrefs

Programs

  • Mathematica
    f[i_, j_] := GCD[2^i - 1, 2^j - 1];
    m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}]
    TableForm[m[8]] (* 8 X 8 principal submatrix *)
    Flatten[Table[f[i, n + 1 - i],
      {n, 1, 15}, {i, 1, n}]]  (* A204116 *)
    p[n_] := CharacteristicPolynomial[m[n], x];
    c[n_] := CoefficientList[p[n], x]
    TableForm[Flatten[Table[p[n], {n, 1, 10}]]]
    Table[c[n], {n, 1, 12}]
    Flatten[%]                 (* A204117 *)
    TableForm[Table[c[n], {n, 1, 10}]]

A204120 Symmetric matrix based on f(i,j) = gcd(prime(i+1),prime(j+1)), by antidiagonals.

Original entry on oeis.org

3, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 11, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 13, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 17, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 19, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Clark Kimberling, Jan 11 2012

Keywords

Comments

A204120 represents the matrix M given by f(i,j)=GCD(prime(i+1),prime(j+1)) for i>=1 and j>=1. See A204121 for characteristic polynomials of principal submatrices of M, with interlacing zeros. See A204016 for a guide to other choices of M.
Square array with odd primes (A065091) on main diagonal, and 1 at all other entries; array A204118 without its top row and the leftmost column. - Antti Karttunen, Sep 25 2018

Examples

			Northwest corner:
3 1 1 1
1 5 1 1
1 1 7 1
1 1 1 11
		

Crossrefs

Cf. A065091 (main diagonal), A204118, A204121, A204016, A202453.

Programs

  • Mathematica
    f[i_, j_] := GCD[Prime[i + 1], Prime[j + 1]];
    m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}]
    TableForm[m[8]] (* 8x8 principal submatrix *)
    Flatten[Table[f[i, n + 1 - i],
      {n, 1, 15}, {i, 1, n}]]    (* A204120 *)
    p[n_] := CharacteristicPolynomial[m[n], x];
    c[n_] := CoefficientList[p[n], x]
    TableForm[Flatten[Table[p[n], {n, 1, 10}]]]
    Table[c[n], {n, 1, 12}]
    Flatten[%]                   (* A204121 *)
    TableForm[Table[c[n], {n, 1, 10}]]
  • PARI
    up_to = 65703; \\ = binomial(362+1,2)
    A204120sq(row,col) = gcd(prime(1+row),prime(1+col));
    A204120list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, for(col=1,a, if(i++ > up_to, return(v)); v[i] = A204120sq((a-(col-1)),col))); (v); };
    v204120 = A204120list(up_to);
    A204120(n) = v204120[n]; \\ Antti Karttunen, Sep 25 2018

A204127 Symmetric matrix based on f(i,j)=(F(i+1) if i=j and 1 otherwise), where F=A000045 (Fibonacci numbers), by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 13, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 21, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Clark Kimberling, Jan 11 2012

Keywords

Comments

A204127 represents the matrix M given by f(i,j)=(F(i+1) if i=j and 1 otherwise) for i>=1 and j>=1. See A204128 for characteristic polynomials of principal submatrices of M, with interlacing zeros. See A204016 for a guide to other choices of M.

Examples

			Northwest corner:
1 1 1 1 1 1
1 2 1 1 1 1
1 1 3 1 1 1
1 1 1 5 1 1
1 1 1 1 8 1
1 1 1 1 1 13
		

Crossrefs

Programs

  • Mathematica
    f[i_, j_] := 1; f[i_, i_] := Fibonacci[i + 1];
    m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}]
    TableForm[m[8]] (* 8x8 principal submatrix *)
    Flatten[Table[f[i, n + 1 - i],
      {n, 1, 15}, {i, 1, n}]]  (* A204127 *)
    p[n_] := CharacteristicPolynomial[m[n], x];
    c[n_] := CoefficientList[p[n], x]
    TableForm[Flatten[Table[p[n], {n, 1, 10}]]]
    Table[c[n], {n, 1, 12}]
    Flatten[%]                 (* A204128 *)
    TableForm[Table[c[n], {n, 1, 10}]]
Previous Showing 41-50 of 64 results. Next