A204892 Least k such that n divides s(k)-s(j) for some j in [1,k), where s(k)=prime(k).
2, 3, 3, 4, 4, 5, 7, 5, 5, 6, 6, 7, 10, 7, 7, 8, 8, 9, 13, 9, 9, 10, 16, 10, 16, 10, 10, 11, 11, 12, 19, 12, 20, 12, 12, 13, 22, 13, 13, 14, 14, 15, 24, 15, 15, 16, 25, 16, 26, 16, 16, 17, 29, 17, 30, 17, 17, 18, 18, 19, 31, 19, 32, 19, 19, 20, 33, 20, 20, 21
Offset: 1
Keywords
A205558 (A204898)/2 = (prime(k)-prime(j))/2; A086802 without its zeros.
1, 2, 1, 4, 3, 2, 5, 4, 3, 1, 7, 6, 5, 3, 2, 8, 7, 6, 4, 3, 1, 10, 9, 8, 6, 5, 3, 2, 13, 12, 11, 9, 8, 6, 5, 3, 14, 13, 12, 10, 9, 7, 6, 4, 1, 17, 16, 15, 13, 12, 10, 9, 7, 4, 3, 19, 18, 17, 15, 14, 12, 11, 9, 6, 5, 2, 20, 19, 18, 16, 15, 13, 12, 10, 7, 6, 3, 1, 22, 21
Offset: 1
Keywords
Comments
Let p(n) denote the n-th prime. If c is a positive integer, there are infinitely many pairs (k,j) such that c divides p(k)-p(j). The set of differences p(k)-p(j) is ordered as a sequence at A204890. Guide to related sequences:
c....k..........j..........p(k)-p(j).[p(k)-p(j)]/c
It appears that, as rectangular array, this sequence can be described by A(n,k) is the least m such that there are k primes in the set prime(n) + 2*i for {i=1..n}. - Michel Marcus, Mar 29 2023
Examples
Writing prime(k) as p(k), p(3)-p(2)=5-3=2 p(4)-p(2)=7-3=4 p(4)-p(3)=7-5=2 p(5)-p(2)=11-3=8 p(5)-p(3)=11-5=6 p(5)-p(4)=11-7=4, so that the first 6 terms of A205558 are 1,2,1,4,3,2. The sequence can be regarded as a rectangular array in which row n is given by [prime(n+2+k)-prime(n+1)]/2; a northwest corner follows: 1...2...4...5...7...8....10...13...14...17...19...20 1...3...4...6...7...9....12...13...16...18...19...21 2...3...5...6...8...11...12...15...17...18...20...23 1...3...4...6...9...10...13...15...16...18...21...24 2...3...5...8...9...12...14...15...17...20...23...24 1...3...6...7...10..12...13...15...18...21...22...25 2...5...6...9...11..12...14...17...20...21...24...26 - _Clark Kimberling_, Sep 29 2013
Programs
-
Mathematica
s[n_] := s[n] = Prime[n]; z1 = 200; z2 = 80; f[n_] := f[n] = Floor[(-1 + Sqrt[8 n - 7])/2]; Table[s[n], {n, 1, 30}] (* A000040 *) u[m_] := u[m] = Flatten[Table[s[k] - s[j], {k, 2, z1}, {j, 1, k - 1}]][[m]] Table[u[m], {m, 1, z1}] (* A204890 *) v[n_, h_] := v[n, h] = If[IntegerQ[u[h]/n], h, 0] w[n_] := w[n] = Table[v[n, h], {h, 1, z1}] d[n_] := d[n] = Delete[w[n], Position[w[n], 0]] c = 2; t = d[c] (* A080036 *) k[n_] := k[n] = Floor[(3 + Sqrt[8 t[[n]] - 1])/2] j[n_] := j[n] = t[[n]] - f[t][[n]] (f[t[[n]]] + 1)/2 Table[k[n], {n, 1, z2}] (* A133196 *) Table[j[n], {n, 1, z2}] (* A131818 *) Table[s[k[n]] - s[j[n]], {n, 1, z2}] (* A204898 *) Table[(s[k[n]] - s[j[n]])/c, {n, 1, z2}] (* A205558 *)
A205840 [s(k)-s(j)]/2, where the pairs (k,j) are given by A205837 and A205838.
1, 2, 1, 3, 6, 5, 4, 10, 9, 8, 4, 16, 13, 27, 26, 25, 21, 17, 44, 43, 42, 38, 34, 17, 71, 68, 55, 116, 115, 114, 110, 106, 89, 72, 188, 187, 186, 182, 178, 161, 144, 72, 304, 301, 288, 233, 493, 492, 491, 487, 483, 466, 449, 377, 305, 798, 797, 796, 792, 788
Offset: 1
Keywords
Comments
Let s(n)=F(n+1), where F=A000045 (Fibonacci numbers), so that s=(1,2,3,5,8,13,21,...). If c is a positive integer, there are infinitely many pairs (k,j) such that c divides s(k)-s(j). The set of differences s(k)-s(j) is ordered as a sequence at A204922. Guide to related sequences:
c....k..........j..........s(k)-s(j)....[s(k)-s(j)]/c
Examples
The first six terms match these differences: s(3)-s(1) = 3-1 = 2 = 2*1 s(4)-s(1) = 5-1 = 4 = 2*2 s(4)-s(3) = 5-3 = 2 = 2*1 s(5)-s(2) = 8-2 = 6 = 2*3 s(6)-s(1) = 13-1 = 12 = 2*6 s(6)-s(3) = 13-3 = 10 = 2*5
Programs
-
Mathematica
s[n_] := s[n] = Fibonacci[n + 1]; z1 = 400; z2 = 60; f[n_] := f[n] = Floor[(-1 + Sqrt[8 n - 7])/2]; Table[s[n], {n, 1, 30}] u[m_] := u[m] = Flatten[Table[s[k] - s[j], {k, 2, z1}, {j, 1, k - 1}]][[m]] Table[u[m], {m, 1, z1}] (* A204922 *) v[n_, h_] := v[n, h] = If[IntegerQ[u[h]/n], h, 0] w[n_] := w[n] = Table[v[n, h], {h, 1, z1}] d[n_] := d[n] = Delete[w[n], Position[w[n], 0]] c = 2; t = d[c] (* A205556 *) k[n_] := k[n] = Floor[(3 + Sqrt[8 t[[n]] - 1])/2] j[n_] := j[n] = t[[n]] - f[t][[n]] (f[t[[n]]] + 1)/2 Table[k[n], {n, 1, z2}] (* A205837 *) Table[j[n], {n, 1, z2}] (* A205838 *) Table[s[k[n]] - s[j[n]], {n, 1, z2}] (* A205839 *) Table[(s[k[n]] - s[j[n]])/c, {n, 1, z2}] (* A205840 *)
A152535 a(n) = n*prime(n) - Sum_{i=1..n} prime(i).
0, 1, 5, 11, 27, 37, 61, 75, 107, 161, 181, 247, 295, 321, 377, 467, 563, 597, 705, 781, 821, 947, 1035, 1173, 1365, 1465, 1517, 1625, 1681, 1797, 2217, 2341, 2533, 2599, 2939, 3009, 3225, 3447, 3599, 3833, 4073, 4155, 4575, 4661
Offset: 1
Comments
a(n) is also the area under the curve of the function pi(x) from 0 to prime(n). - Omar E. Pol, Nov 13 2013
Examples
From _Omar E. Pol_, Apr 27 2015: (Start) For n = 5 the 5th prime is 11 and the sum of first five primes is 2 + 3 + 5 + 7 + 11 = 28, so a(5) = 5*11 - 28 = 27. Illustration of a(5) = 27: Consider a diagram in the first quadrant of the square grid in which the number of cells in the n-th horizontal bar is equal to the n-th prime, as shown below: . _ _ _ _ _ _ _ _ _ _ _ . 11 |_ _ _ _ _ _ _ _ _ _ _| . 7 |_ _ _ _ _ _ _|* * * * . 5 |_ _ _ _ _|* * * * * * . 3 |_ _ _|* * * * * * * * . 2 |_ _|* * * * * * * * * . a(5) is also the area (or the number of cells, or the number of *'s) under the bar's structure of prime numbers: a(5) = 1 + 4 + 6 + 16 = 27. (End)
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
- Christian Axler, On a sequence involving the prime numbers, arXiv:1504.04467 [math.NT], 2015 and J. Int. Seq. 18 (2015) # 15.7.6.
- Christian Axler, Improving the Estimates for a Sequence Involving Prime Numbers, arXiv:1706.04049 [math.NT], 2017.
Crossrefs
Programs
-
Mathematica
nn = 100; p = Prime[Range[nn]]; Range[nn] p - Accumulate[p] (* T. D. Noe, May 02 2011 *)
-
PARI
vector(80, n, n*prime(n) - sum(k=1, n, prime(k))) \\ Michel Marcus, Apr 20 2015
-
Python
from sympy import prime, primerange def A152535(n): return (n-1)*(p:=prime(n))-sum(primerange(p)) # Chai Wah Wu, Jan 01 2024
-
Sage
[n*nth_prime(n) - sum(nth_prime(j) for j in range(1,n+1)) for n in range(1,45)] # Danny Rorabaugh, Apr 18 2015
Formula
a(n) = Sum_{k=1..n-1} k*A001223(k). - François Huppé, Mar 16 2022
A205720
Numbers k for which 10 divides prime(k)-prime(j) for some j
6, 7, 9, 9, 10, 11, 12, 12, 13, 13, 14, 14, 14, 15, 15, 15, 16, 16, 16, 16, 17, 17, 18, 18, 18, 19, 19, 19, 19, 20, 20, 20, 20, 21, 21, 21, 21, 21, 22, 22, 22, 23, 23, 23, 23, 23, 23, 24, 24, 24, 24, 25, 25, 25, 25, 25, 26, 26, 26, 26, 26, 27, 27, 27, 27, 27, 27
Offset: 1
Keywords
Comments
For a guide to related sequences, see A205558.
Examples
The first six terms match these differences: p(6)-p(2)=13-3=10=10*1 p(7)-p(4)=17-7=10=10*1 p(9)-p(2)=23-3=20=10*2 p(9)-p(6)=23-13=10=10*1 p(10)-p(8)=29-19=10=10*1 p(11)-p(5)=31-11=20=10*2
Programs
-
Mathematica
s[n_] := s[n] = Prime[n]; z1 = 900; z2 = 70; f[n_] := f[n] = Floor[(-1 + Sqrt[8 n - 7])/2]; Table[s[n], {n, 1, 30}] (* A000040 *) u[m_] := u[m] = Flatten[Table[s[k] - s[j], {k, 2, z1}, {j, 1, k - 1}]][[m]] Table[u[m], {m, 1, z1}] (* A204890 *) v[n_, h_] := v[n, h] = If[IntegerQ[u[h]/n], h, 0] w[n_] := w[n] = Table[v[n, h], {h, 1, z1}] d[n_] := d[n] = Delete[w[n], Position[w[n], 0]] c = 10; t = d[c] (* A205718 *) k[n_] := k[n] = Floor[(3 + Sqrt[8 t[[n]] - 1])/2] j[n_] := j[n] = t[[n]] - f[t][[n]] (f[t[[n]]] + 1)/2 Table[k[n], {n, 1, z2}] (* A205720 *) Table[j[n], {n, 1, z2}] (* A205721 *) Table[s[k[n]], {n, 1, z2}] (* A205722 *) Table[s[j[n]], {n, 1, z2}] (* A205723 *) Table[s[k[n]] - s[j[n]], {n, 1, z2}] (* A205724 *) Table[(s[k[n]] - s[j[n]])/c, {n, 1, z2}] (* A205725 *)
A205560
Numbers k for which 3 divides prime(k)-prime(j) for some j
3, 5, 5, 6, 7, 7, 7, 8, 8, 9, 9, 9, 9, 10, 10, 10, 10, 10, 11, 11, 11, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15, 16, 16, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 17, 17, 17, 17, 18, 18, 18, 18, 18, 18, 19, 19, 19, 19
Offset: 1
Keywords
Comments
For a guide to related sequences, see A205558.
Examples
The first six terms match these differences: p(3)-p(1)=5-2=3=3*1 p(5)-p(1)=11-2=9=3*3 p(5)-p(3)=11-5=6=3*2 p(6)-p(4)=13-7=6=3*2 p(7)-p(1)=17-2=15=3*5 p(7)-p(3)=17-5=12=3*4
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
R:= NULL: N[0]:= 0: N[1]:= 0: N[2]:= 0: p:= 0: for k from 1 to 30 do p:= nextprime(p); v:= p mod 3; R:= R, k$N[v]; N[v]:= N[v]+1; od: R; # Robert Israel, Nov 18 2024
-
Mathematica
s[n_] := s[n] = Prime[n]; z1 = 200; z2 = 80; f[n_] := f[n] = Floor[(-1 + Sqrt[8 n - 7])/2]; Table[s[n], {n, 1, 30}] (* A000040 *) u[m_] := u[m] = Flatten[Table[s[k] - s[j], {k, 2, z1}, {j, 1, k - 1}]][[m]] Table[u[m], {m, 1, z1}] (* A204890 *) v[n_, h_] := v[n, h] = If[IntegerQ[u[h]/n], h, 0] w[n_] := w[n] = Table[v[n, h], {h, 1, z1}] d[n_] := d[n] = Delete[w[n], Position[w[n], 0]] c = 3; t = d[c] (* A205559 *) k[n_] := k[n] = Floor[(3 + Sqrt[8 t[[n]] - 1])/2] j[n_] := j[n] = t[[n]] - f[t][[n]] (f[t[[n]]] + 1)/2 Table[k[n], {n, 1, z2}] (* A205560 *) Table[j[n], {n, 1, z2}] (* A205547 *) Table[s[k[n]], {n, 1, z2}] (* A205673 *) Table[s[j[n]], {n, 1, z2}] (* A205674 *) Table[s[k[n]] - s[j[n]], {n, 1, z2}] (* A205557 *) Table[(s[k[n]] - s[j[n]])/c, {n, 1, z2}] (* A205675 *)
A205677
Numbers k for which 4 divides prime(k)-prime(j) for some j
4, 5, 5, 6, 7, 7, 8, 8, 8, 9, 9, 9, 9, 10, 10, 10, 11, 11, 11, 11, 11, 12, 12, 12, 12, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 17, 17, 17, 18, 18, 18, 18, 18, 18, 18, 19, 19, 19, 19, 19, 19
Offset: 1
Keywords
Comments
For a guide to related sequences, see A205558.
Examples
The first six terms match these differences: p(4)-p(2)=7-3=4=4*1 p(5)-p(2)=11-3=8=4*2 p(5)-p(4)=11-7=4=4*1 p(6)-p(3)=13-5=8=4*2 p(7)-p(3)=17-5=12=4*3 p(7)-p(6)=17-13=4=4*1
Programs
-
Mathematica
s[n_] := s[n] = Prime[n]; z1 = 200; z2 = 80; f[n_] := f[n] = Floor[(-1 + Sqrt[8 n - 7])/2]; Table[s[n], {n, 1, 30}] (* A000040 *) u[m_] := u[m] = Flatten[Table[s[k] - s[j], {k, 2, z1}, {j, 1, k - 1}]][[m]] Table[u[m], {m, 1, z1}] (* A204890 *) v[n_, h_] := v[n, h] = If[IntegerQ[u[h]/n], h, 0] w[n_] := w[n] = Table[v[n, h], {h, 1, z1}] d[n_] := d[n] = Delete[w[n], Position[w[n], 0]] c = 4; t = d[c] (* A205676 *) k[n_] := k[n] = Floor[(3 + Sqrt[8 t[[n]] - 1])/2] j[n_] := j[n] = t[[n]] - f[t][[n]] (f[t[[n]]] + 1)/2 Table[k[n], {n, 1, z2}] (* A205677 *) Table[j[n], {n, 1, z2}] (* A205678 *) Table[s[k[n]], {n, 1, z2}] (* A205679 *) Table[s[j[n]], {n, 1, z2}] (* A205680 *) Table[s[k[n]] - s[j[n]], {n, 1, z2}] (* A205681 *) Table[(s[k[n]] - s[j[n]])/c, {n, 1, z2}] (* A205682 *)
A205684
Numbers k for which 5 divides prime(k)-prime(j) for some j
4, 6, 7, 7, 9, 9, 10, 11, 12, 12, 12, 13, 13, 14, 14, 14, 15, 15, 15, 15, 16, 16, 16, 16, 17, 17, 18, 18, 18, 19, 19, 19, 19, 19, 20, 20, 20, 20, 21, 21, 21, 21, 21, 22, 22, 22, 23, 23, 23, 23, 23, 23, 24, 24, 24, 24, 25, 25, 25, 25, 25, 25, 26, 26, 26, 26, 26, 27
Offset: 1
Keywords
Comments
For a guide to related sequences, see A205558.
Examples
The first six terms match these differences: p(4)-p(1)=7-2=5=5*1 p(6)-p(2)=13-3=10=5*2 p(7)-p(1)=17-2=15=5*3 p(7)-p(4)=17-7=10=5*2 p(9)-p(2)=23-3=20=5*4 p(9)-p(6)=23-13=10=5*2
Programs
-
Mathematica
s[n_] := s[n] = Prime[n]; z1 = 400; z2 = 80; f[n_] := f[n] = Floor[(-1 + Sqrt[8 n - 7])/2]; Table[s[n], {n, 1, 30}] (* A000040 *) u[m_] := u[m] = Flatten[Table[s[k] - s[j], {k, 2, z1}, {j, 1, k - 1}]][[m]] Table[u[m], {m, 1, z1}] (* A204890 *) v[n_, h_] := v[n, h] = If[IntegerQ[u[h]/n], h, 0] w[n_] := w[n] = Table[v[n, h], {h, 1, z1}] d[n_] := d[n] = Delete[w[n], Position[w[n], 0]] c = 5; t = d[c] (* A205683 *) k[n_] := k[n] = Floor[(3 + Sqrt[8 t[[n]] - 1])/2] j[n_] := j[n] = t[[n]] - f[t][[n]] (f[t[[n]]] + 1)/2 Table[k[n], {n, 1, z2}] (* A205684 *) Table[j[n], {n, 1, z2}] (* A205685 *) Table[s[k[n]], {n, 1, z2}] (* A205686 *) Table[s[j[n]], {n, 1, z2}] (* A205687 *) Table[s[k[n]] - s[j[n]], {n, 1, z2}] (* A205688 *) Table[(s[k[n]] - s[j[n]])/c, {n, 1, z2}] (* A205689 *)
A205691
Numbers k for which 6 divides prime(k)-prime(j) for some j
5, 6, 7, 7, 8, 8, 9, 9, 9, 10, 10, 10, 10, 11, 11, 11, 12, 12, 12, 12, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 16, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 17, 17, 17, 18, 18, 18, 18, 18, 18, 19, 19, 19, 19, 19, 19, 19, 20, 20, 20, 20, 20
Offset: 1
Keywords
Comments
For a guide to related sequences, see A205558.
Examples
The first six terms match these differences: p(5)-p(3)=11-5=6=6*1 p(6)-p(4)=13-7=6=6*1 p(7)-p(3)=17-5=12=6*2 p(7)-p(5)=17-11=6=6*1 p(8)-p(4)=19-7=12=6*2 p(8)-p(6)=19-13=6=6*1
Programs
-
Mathematica
s[n_] := s[n] = Prime[n]; z1 = 400; z2 = 80; f[n_] := f[n] = Floor[(-1 + Sqrt[8 n - 7])/2]; Table[s[n], {n, 1, 30}] (* A000040 *) u[m_] := u[m] = Flatten[Table[s[k] - s[j], {k, 2, z1}, {j, 1, k - 1}]][[m]] Table[u[m], {m, 1, z1}] (* A204890 *) v[n_, h_] := v[n, h] = If[IntegerQ[u[h]/n], h, 0] w[n_] := w[n] = Table[v[n, h], {h, 1, z1}] d[n_] := d[n] = Delete[w[n], Position[w[n], 0]] c = 6; t = d[c] (* A205690 *) k[n_] := k[n] = Floor[(3 + Sqrt[8 t[[n]] - 1])/2] j[n_] := j[n] = t[[n]] - f[t][[n]] (f[t[[n]]] + 1)/2 Table[k[n], {n, 1, z2}] (* A205691 *) Table[j[n], {n, 1, z2}] (* A205692 *) Table[s[k[n]], {n, 1, z2}] (* A205693 *) Table[s[j[n]], {n, 1, z2}] (* A205694 *) Table[s[k[n]] - s[j[n]], {n, 1, z2}] (* A205695 *) Table[(s[k[n]] - s[j[n]])/c, {n, 1, z2}] (* A205696 *)
A205698
Numbers k for which 7 divides prime(k)-prime(j) for some j
7, 8, 9, 11, 11, 12, 12, 13, 14, 15, 15, 16, 17, 17, 17, 18, 18, 18, 19, 19, 20, 20, 21, 21, 21, 21, 22, 22, 22, 23, 23, 24, 24, 24, 24, 25, 25, 25, 26, 26, 26, 26, 26, 27, 27, 27, 27, 27, 28, 28, 28, 28, 29, 29, 29, 30, 30, 30, 31, 31, 31, 31, 32, 32, 32, 32, 32
Offset: 1
Keywords
Comments
For a guide to related sequences, see A205558.
Examples
The first six terms match these differences: p(7)-p(2)=17-3=14=7*2 p(8)-p(3)=19-5=14=7*2 p(9)-p(1)=23-2=21=7*3 p(11)-p(2)=31-3=28=7*4 p(11)-p(7)=31-17=14=7*2 p(12)-p(1)=37-2=35=7*5
Programs
-
Mathematica
s[n_] := s[n] = Prime[n]; z1 = 1200; z2 = 80; f[n_] := f[n] = Floor[(-1 + Sqrt[8 n - 7])/2]; Table[s[n], {n, 1, 30}] (* A000040 *) u[m_] := u[m] = Flatten[Table[s[k] - s[j], {k, 2, z1}, {j, 1, k - 1}]][[m]] Table[u[m], {m, 1, z1}] (* A204890 *) v[n_, h_] := v[n, h] = If[IntegerQ[u[h]/n], h, 0] w[n_] := w[n] = Table[v[n, h], {h, 1, z1}] d[n_] := d[n] = Delete[w[n], Position[w[n], 0]] c = 7; t = d[c] (* A205697 *) k[n_] := k[n] = Floor[(3 + Sqrt[8 t[[n]] - 1])/2] j[n_] := j[n] = t[[n]] - f[t][[n]] (f[t[[n]]] + 1)/2 Table[k[n], {n, 1, z2}] (* A205698 *) Table[j[n], {n, 1, z2}] (* A205699 *) Table[s[k[n]], {n, 1, z2}] (* A205700 *) Table[s[j[n]], {n, 1, z2}] (* A205701 *) Table[s[k[n]] - s[j[n]], {n, 1, z2}] (* A205702 *) Table[(s[k[n]] - s[j[n]])/c, {n, 1, z2}] (* A205703 *)
Comments
Examples
Links
Crossrefs
Programs
Mathematica
PARI