cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A373752 a(n) = Sum_{k=0..n-2} A205497(n, k) * (1 - k mod 2) if n >= 2, a(0) = a(1) = 1.

Original entry on oeis.org

1, 1, 1, 1, 2, 8, 33, 136, 670, 3968, 25593, 176896, 1344154, 11184128, 99897361, 951878656, 9687175862, 104932671488, 1202872541673, 14544442556416, 185158504589938, 2475749026562048, 34676498435503489, 507711943253426176, 7757079744889072462, 123460740095103991808
Offset: 0

Views

Author

Peter Luschny, Jun 16 2024

Keywords

Comments

Number of linear extensions in L(eps Z_n) that have an even number of descents. (See Petersen and Yan Zhuang, p. 6.)

Crossrefs

Programs

  • Maple
    enum := L -> ListTools:-Enumerate(L):
    seq(add(c[2]*irem(c[1], 2), c = enum([A205497row(n)])), n = 0..25);

Formula

A373753 a(n) = Sum_{k=0..n-2} A205497(n, k) * (k mod 2).

Original entry on oeis.org

0, 0, 0, 1, 3, 8, 28, 136, 715, 3968, 24928, 176896, 1358611, 11184128, 99463620, 951878656, 9704336283, 104932671488, 1202007133768, 14544442556416, 185212683647587, 2475749026562048, 34672375957634412, 507711943253426176, 7757454418668014443, 123460740095103991808
Offset: 0

Views

Author

Peter Luschny, Jun 16 2024

Keywords

Comments

Number of linear extensions in L(eps Z_n) that have an odd number of descents. (See Petersen and Yan Zhuang, p. 6.)

Crossrefs

Programs

  • Maple
    enum := L -> ListTools:-Enumerate(L):
    seq(add(c[2]*(1-irem(c[1], 2)), c = enum([A205497row(n)])), n = 0..25);

Formula

A373754 a(n) = A205497(2*n, n - 1). The central coefficients of the Eulerian zig-zag polynomials.

Original entry on oeis.org

1, 1, 3, 31, 623, 20641, 1019051, 70148989, 6421463423, 754405836811, 110644077164479, 19814920352425441, 4255291684449288503, 1079391696218976473971, 319292229636452654327115, 108942069149956119095870401, 42469095372194594340983910271, 18758916770545140042717283889713
Offset: 0

Views

Author

Peter Luschny, Jun 16 2024

Keywords

Crossrefs

Programs

  • Maple
    1, 1, seq(A205497row(2*n)[n], n = 2..17);

A373755 a(n) = A205497(n, floor((n - 1) / 2)). The middle coefficients of the Eulerian zig-zag polynomials.

Original entry on oeis.org

1, 1, 1, 1, 3, 7, 31, 109, 623, 2951, 20641, 123216, 1019051, 7349140, 70148989, 593513485, 6421463423, 62382094567, 754405836811, 8277393686747, 110644077164479, 1353422057172923, 19814920352425441, 267391099520321166, 4255291684449288503, 62800765220575811118
Offset: 0

Views

Author

Peter Luschny, Jun 16 2024

Keywords

Crossrefs

Programs

  • Maple
    1, 1, 1, seq(A205497row(n)[iquo(n, 2)], n = 3..25);

A205495 Convolution related to array A205497 and to generating functions for the rows of the array form of A050446.

Original entry on oeis.org

1, 46, 937, 12331, 123216, 1019051, 7349140, 47816612, 287357460, 1622135139, 8709442871, 44899559053, 223883501478, 1086005140508, 5148332487873, 23940669359515, 109535136537197, 494307574790201, 2204762394907238, 9736270202183689, 42629974672006973
Offset: 0

Views

Author

L. Edson Jeffery, Jan 28 2012

Keywords

Comments

The denominator of the generating function for this sequence is a polynomial of degree 56. Terms corresponding to n=0,...,20 are shown above, with those for n=21,...,60 as follows: {185291835954412064, 800317930217099771, 3438057983187970745, 14700487950597800766, 62602970565114993286, 265668524077091893747, 1124012759249695584332, 4743119424920236606646, 19969635838069446154607, 83911303727287364502524, 351988383031210413076295, 1474320303050934448138586, 6167313972271997160616487, 25770018446823167711177256, 107575128852482376189099657, 448686576996876913475900985, 1870064613139417627428681546, 7789228056784680467763728356, 32425967246106296890368810943, 134922331498272588364476180150, 561170234171421424687450762218, 2333185213162875626980569334586, 9697691681023767935816546925810, 40296761019115897693378020750304, 167405678599573178754554735425500, 695315826495982432201817860350384, 2887471697263577884599209836720724, 11989119731801937435908186367502418, 49773672878387017240820277186133933, 206615368239595050328432096365772786, 857596063782668973911429246019645248, 3559311146445642266628947699835442405, 14771247245703845390492597474797181501, 61297218039066894581942073485999795498, 254355134654745436101804689307395799176, 1055406241452059982356995468881303135245, 4379061349078358899285795579448995148357, 18168834136106060681393826933553149199771, 75380646388163385087709907289615387511431, 312738422596514964765543905180978445030357}.

Crossrefs

Formula

G.f.: F(x) = (1 + 12*x - 112*x^2 - 343*x^3 + 3560*x^4 + 765*x^5 - 40847*x^6 + 10585*x^7 + 310877*x^8 - 193248*x^9 - 1419395*x^10 + 785781*x^11 + 5312667*x^12 - 2323912*x^13 - 15628824*x^14 + 5966469*x^15 + 33782788*x^16 - 10059915*x^17 - 55526776*x^18 + 8186536*x^19 + 73510769*x^20 + 2472617*x^21 - 80001340*x^22 - 15202136*x^23 + 70051834*x^24 + 21752017*x^25 - 47710282*x^26 - 20490103*x^27 + 24620158*x^28 + 14731526*x^29 - 9477868*x^30 - 8317984*x^31 + 2706852*x^32 + 3624852*x^33 - 575397*x^34 - 1176133*x^35 + 88180*x^36 + 269838*x^37 - 5571*x^38 - 39836*x^39 - 2463*x^40 + 2831*x^41 + 1104*x^42 + 107*x^43 - 221*x^44 - 36*x^45 + 23*x^46 + 2*x^47 - x^48) / ((1-x)^6 * (1-x-x^2)^5 * (1-2*x-x^2+x^3)^4 * (1-2*x-3*x^2+x^3+x^4)^3 * (1-3*x-3*x^2+4*x^3+x^4-x^5)^2 * (1-3*x-6*x^2+4*x^3+5*x^4-x^5-x^6)).
CONJECTURE 1. a(n) = M_{n,5} = M_{5,n}, where M = A205497.
CONJECTURE 2. Let w=2*cos(Pi/13). Then lim_{n->oo} a(n+1)/a(n) = w^5-4*w^3+3*w = spectral radius of the 6 X 6 unit-primitive matrix (see [Jeffery]) A_{13,5} = [0,0,0,0,0,1; 0,0,0,0,1,1; 0,0,0,1,1,1; 0,0,1,1,1,1; 0,1,1,1,1,1; 1,1,1,1,1,1].

A205496 Convolution related to array A205497 and to generating functions for the rows of the array form of A050446.

Original entry on oeis.org

1, 79, 2475, 47191, 656683, 7349140, 70148989, 593513485, 4571277561, 32672880245, 219830952888, 1407595988962, 8650512982826, 51368774778763, 296342413123845, 1668132449230997, 9195464663247238, 49787415018534288, 265430586786327769
Offset: 0

Views

Author

L. Edson Jeffery, Jan 30 2012

Keywords

Comments

See array A205497 regarding association of this sequence with generating functions for the rows of the array form of A050446.

Crossrefs

Formula

G.f.: F(x) = (1 + 29*x - 330*x^2 - 1870*x^3 + 28792*x^4 - 28880*x^5 - 658872*x^6 + 1808035*x^7 + 7251417*x^8 - 30049286*x^9 - 53844318*x^10 + 331611771*x^11 + 172019006*x^12 - 2314667923*x^13 - 44340353*x^14 + 12301024850*x^15 - 283356562*x^16 - 53520778564*x^17 + 21918429228*x^18 + 188280737400*x^19 - 99256863420*x^20 - 537933519143*x^21 + 304479953092*x^22 + 1292735746371*x^23 - 685767992532*x^24 - 2703731985407*x^25 + 1220124121648*x^26 + 4969059486596*x^27 - 1817137951816*x^28 - 7940770334300*x^29 + 2310666239334*x^30 + 10897173663437*x^31 - 242841325861*x^32 - 12794627581139*x^33 + 1919519246791*x^34 + 12918502357203*x^35 - 852890650171*x^36 -11317650709986*x^37 - 313858871781*x^38 + 8665013739391*x^39 + 1068808054156*x^40 - 5804674396693*x^41 - 1231795216164*x^42 + 3382179875958*x^43 + 984955686298*x^44 - 1694171598050*x^45 - 619939090864*x^46 + 718589694092*x^47 + 323730198889*x^48 - 253619875999*x^49 - 144187648137*x^50 + 72968474423*x^51 + 55421646471*x^52 - 16658211415*x^53 - 18346712946*x^54 + 2894246774*x^55 + 5160729532*x^56 - 351795527*x^57 - 1206372119*x^58 + 22006791*x^59 + 227332930*x^60 + 1758161*x^61 - 33060926*x^62 - 881244*x^63 + 3436739*x^64 + 218431*x^65 - 208580*x^66 - 43625*x^67 - 299*x^68 + 6491*x^69 + 1284*x^70 - 646*x^71 - 104*x^72 + 38*x^73 +3*x^74 -x^75) / ((1-x)^7 * (1-x-x^2)^6 * (1-2*x-x^2+x^3)^5 * (1-2*x-3*x^2+x^3+x^4)^4 * (1-3*x-3*x^2+4*x^3+x^4-x^5)^3 * (1-3*x-6*x^2+4*x^3+5*x^4-x^5-x^6)^2 * (1-4*x-6*x^2+10*x^3+5*x^4-6*x^5-x^6+x^7)).
CONJECTURE 1. a(n) = M_{n,6} = M_{6,n}, where M = A205497.
CONJECTURE 2. Let w=2*cos(Pi/15). Then lim_{n->oo} a(n+1)/a(n) = w^6-5*w^4+6*w^2-1 = spectral radius of the 7 X 7 unit-primitive matrix (see [Jeffery]) A_{15,6} = [0,0,0,0,0,0,1; 0,0,0,0,0,1,1; 0,0,0,0,1,1,1; 0,0,0,1,1,1,1; 0,0,1,1,1,1,1; 0,1,1,1,1,1,1; 1,1,1,1,1,1,1].

A373572 Triangle read by rows: Coefficients of the polynomials P(n, x) * EZ(n, x), where P denote the signed Pascal polynomials and EZ the Eulerian zig-zag polynomials A205497.

Original entry on oeis.org

1, -1, 1, 1, -2, 1, -1, 2, 0, -2, 1, 1, -1, -5, 10, -5, -1, 1, -1, -2, 18, -26, 0, 26, -18, 2, 1, 1, 8, -38, 18, 117, -212, 117, 18, -38, 8, 1, -1, -19, 52, 143, -677, 818, 0, -818, 677, -143, -52, 19, 1, 1, 38, -6, -817, 2196, -722, -5071, 8762, -5071, -722, 2196, -817, -6, 38, 1
Offset: 0

Views

Author

Peter Luschny, Jun 15 2024

Keywords

Examples

			Triangle starts:
  [0] [1]
  [1] [-1,   1]
  [2] [ 1,  -2,   1]
  [3] [-1,   2,   0,  -2,    1]
  [4] [ 1,  -1,  -5,  10,   -5,   -1,   1]
  [5] [-1,  -2,  18, -26,    0,   26, -18,    2,   1]
  [6] [ 1,   8, -38,  18,  117, -212, 117,   18, -38,    8,   1]
  [7] [-1, -19,  52, 143, -677,  818,   0, -818, 677, -143, -52, 19, 1]
		

Crossrefs

Cf. A373432, A205497, A373657, A000007 (row sums).

Programs

  • Maple
    EZP((n, k) -> (-1)^(n-k)*binomial(n, k), 8);  # Using function EZP from A373432.

A350354 Number of up/down (or down/up) patterns of length n.

Original entry on oeis.org

1, 1, 1, 3, 11, 51, 281, 1809, 13293, 109899, 1009343, 10196895, 112375149, 1341625041, 17249416717, 237618939975, 3491542594727, 54510993341523, 901106621474801, 15723571927404189, 288804851413993941, 5569918636750820751, 112537773142244706427
Offset: 0

Views

Author

Gus Wiseman, Jan 16 2022

Keywords

Comments

We define a pattern to be a finite sequence covering an initial interval of positive integers. Patterns are counted by A000670 and ranked by A333217. A patten is up/down if it is alternately strictly increasing and strictly decreasing, starting with an increase.
A pattern is up/down if it is alternately strictly increasing and strictly decreasing, starting with an increase. For example, the partition (3,2,2,2,1) has no up/down permutations, even though it does have the anti-run permutation (2,3,2,1,2).
Conjecture: Also the half the number of weakly up/down patterns of length n.
These are the values of the Euler zig-zag polynomials A205497 evaluated at x = 1/2 and normalized by 2^n. - Peter Luschny, Jun 03 2024

Examples

			The a(0) = 1 through a(4) = 11 patterns:
  ()  (1)  (1,2)  (1,2,1)  (1,2,1,2)
                  (1,3,2)  (1,2,1,3)
                  (2,3,1)  (1,3,1,2)
                           (1,3,2,3)
                           (1,3,2,4)
                           (1,4,2,3)
                           (2,3,1,2)
                           (2,3,1,3)
                           (2,3,1,4)
                           (2,4,1,3)
                           (3,4,1,2)
		

Crossrefs

The version for permutations is A000111, undirected A001250.
For compositions we have A025048, down/up A025049, undirected A025047.
This is the up/down (or down/up) case of A345194.
A205497 are the Euler zig-zag polynomials.
A000670 counts patterns, ranked by A333217.
A005649 counts anti-run patterns.
A019536 counts necklace patterns.
A226316 counts patterns avoiding (1,2,3), weakly A052709.
A335515 counts patterns matching (1,2,3).
A349058 counts weakly alternating patterns.
A350252 counts non-alternating patterns.
Row sums of A079502.

Programs

  • Maple
    # Using the recurrence by Kyle Petersen from A205497.
    G := proc(n) option remember; local F;
    if n = 0 then 1/(1 - q*x) else F := G(n - 1);
    simplify((p/(p - q))*(subs({p = q, q = p}, F) - subs(p = q, F))) fi end:
    A350354 := n -> 2^n*subs({p = 1, q = 1, x = 1/2}, G(n)*(1 - x)^(n + 1)):
    seq(A350354(n), n = 0..22);  # Peter Luschny, Jun 03 2024
  • Mathematica
    allnorm[n_]:=If[n<=0,{{}},Function[s, Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
    updoQ[y_]:=And@@Table[If[EvenQ[m],y[[m]]>y[[m+1]],y[[m]]
    				
  • PARI
    F(p,x) = {sum(k=0, p, (-1)^((k+1)\2)*binomial((p+k)\2, k)*x^k)}
    R(n,k) = {Vec(if(k==1, 0, F(k-2,-x)/F(k-1,x)-1) + x + O(x*x^n))}
    seq(n)= {concat([1], sum(k=1, n, R(n, k)*sum(r=k, n, binomial(r, k)*(-1)^(r-k)) ))} \\ Andrew Howroyd, Feb 04 2022

Formula

a(n > 2) = A344605(n)/2.
a(n > 1) = A345194(n)/2.

Extensions

Terms a(10) and beyond from Andrew Howroyd, Feb 04 2022

A205492 Expansion of (1-x^2-x^3-x^4+x^5)/((1-x)^3*(1-x-x^2)^2*(1-2*x-x^2+x^3)).

Original entry on oeis.org

1, 7, 31, 109, 334, 937, 2475, 6267, 15393, 36976, 87369, 203915, 471546, 1082849, 2473535, 5627684, 12765052, 28887838, 65260270, 147233926, 331842395, 747355066, 1682185342, 3784718431, 8512408455, 19141037360, 43032743620
Offset: 0

Views

Author

L. Edson Jeffery, Jan 28 2012

Keywords

Comments

See array A205497 regarding association of this sequence with generating functions for the rows of the array form of A050446.

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1-x^2-x^3-x^4+x^5)/((1-x)^3*(1-x-x^2)^2*(1-2*x-x^2+ x^3)) )); // G. C. Greubel, Jan 04 2020
    
  • Maple
    seq(coeff(series((1-x^2-x^3-x^4+x^5)/((1-x)^3*(1-x-x^2)^2*(1-2*x-x^2+ x^3)), x, n+1), x, n), n = 0..30); # G. C. Greubel, Jan 04 2020
  • Mathematica
    LinearRecurrence[{7,-17,12,15,-26,3,13,-5,-2,1},{1,7,31,109,334,937,2475,6267, 15393,36976},30] (* Harvey P. Dale, Mar 26 2013 *)
    CoefficientList[Series[(1-x^2-x^3-x^4+x^5)/((1-x)^3*(1-x-x^2)^2*(1-2*x-x^2+ x^3)), {x,0,30}], x] (* G. C. Greubel, Jan 04 2020 *)
  • PARI
    my(x='x+O('x^30)); Vec((1-x^2-x^3-x^4+x^5)/((1-x)^3*(1-x-x^2)^2*(1-2*x-x^2+ x^3))) \\ G. C. Greubel, Jan 04 2020
    
  • Sage
    def A205492_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1-x^2-x^3-x^4+x^5)/((1-x)^3*(1-x-x^2)^2*(1-2*x-x^2+x^3)) ).list()
    A205492_list(30) # G. C. Greubel, Jan 04 2020

Formula

a(n) = 7*a(n-1) - 17*a(n-2) + 12*a(n-3) + 15*a(n-4) - 26*a(n-5) + 3*a(n-6) + 13*a(n-7) - 5*a(n-8) - 2*a(n-9) + a(n-10), n>9, {a(m)} = {1, 7, 31, 109, 334, 937, 2475, 6267, 15393, 36976}, m=0,...,9.
CONJECTURE 1. a(n) = M_{n,2} = M_{2,n}, where M = A205497.
CONJECTURE 2. lim_{n->oo} a(n+1)/a(n) = (2*cos(Pi/7))^2-1 = A116425-1 = spectral radius of the 3 X 3 unit-primitive matrix (see [Jeffery]) A_{7,2} = [0,0,1; 0,1,1; 1,1,1].

A373434 Triangle read by rows: Coefficients of the Eulerian polynomials EC(n, x)*EZ(n, x), where EC denote the classical Eulerian and EZ the zig-zag Eulerian polynomials.

Original entry on oeis.org

1, 1, 1, 1, 1, 5, 5, 1, 1, 14, 45, 45, 14, 1, 1, 33, 255, 671, 671, 255, 33, 1, 1, 71, 1131, 6311, 14446, 14446, 6311, 1131, 71, 1, 1, 146, 4420, 46571, 206932, 427370, 427370, 206932, 46571, 4420, 146, 1, 1
Offset: 0

Views

Author

Peter Luschny, Jun 04 2024

Keywords

Comments

There are various conventions for indexing Eulerian numbers. The one used here determines that all corresponding polynomials have p(n, 0) = 1. This applies equally to the classical Eulerian polynomials with coefficients A173018, the Eulerian zig-zag polynomials with coefficients A205497, and the polynomials here.

Examples

			Triangle T(n, k) starts:
  [0] 1;
  [1] 1;
  [2] 1,  1;
  [3] 1,  5,    5,    1;
  [4] 1, 14,   45,   45,    14,     1;
  [5] 1, 33,  255,  671,   671,   255,   33,    1;
  [6] 1, 71, 1131, 6311, 14446, 14446, 6311, 1131, 71,  1;
  ...
Written as polynomials P(n, x):
  [0] 1;
  [1] 1;
  [2] 1 +    x;
  [3] 1 +  5*x +   5*x^2 +     x^3;
  [4] 1 + 14*x +  45*x^2 +  45*x^3 +  14*x^4 +     x^5;
  [5] 1 + 33*x + 255*x^2 + 671*x^3 + 671*x^4 + 255*x^5 + 33*x^6 + x^7;
  ...
P(3, x) = A205497(3, x) * A173018(3, x) = (1 + x) * (1 + 4*x + x^2) = 1 + 5*x + 5*x^2 + x^3.
		

Crossrefs

Cf. A173018 (Eulerian), A205497 (Eulerian zig-zag), A373433 (row sums).

Programs

  • Maple
    # Using the recurrence by Kyle Petersen from A205497.
    R := proc(n) option remember; local F; if n = 0 then 1/(1 - q*x) else F := R(n - 1); simplify(p/(p - q)*(subs({p = q, q = p}, F) - subs(p = q, F))) fi end:
    EZ := (n, x) -> ifelse(n < 3, 1, expand(simplify(subs({p = 1, q = 1}, R(n))*(1 - x)^(n + 1)) / x^2)):
    EC := (n, x) -> local k; simplify(add(combinat:-eulerian1(n, k)*x^k, k = 0..n)):
    EZC := (n, x) -> expand(EZ(n, x) * EC(n, x)):
    Trow := n -> local k; if n < 2 then [1] elif n = 2 then [1, 1] else [seq(coeff(EZC(n, x), x, k), k = 0..2*n-3)] fi:
    seq(print(EZC(n, x)), n = 0..6); seq(print(Trow(n)), n = 0..6);
  • Mathematica
    R[n_] := R[n] = Module[{F}, If[n == 0, 1/(1 - q*x), F = R[n - 1]; Simplify[p/(p - q)*(ReplaceAll[F, {p -> q, q -> p}] - ReplaceAll[F, p -> q])]]];
    EZ[n_, x_] := If[n < 3, 1, Expand[Simplify[ReplaceAll[R[n], {p -> 1, q -> 1}]*(1 - x)^(n + 1)] / x^2]];
    eulerian1[n_, k_] := If[n == 0, 1, Sum[(-1)^j*Binomial[n + 1, j]*(k + 1 - j)^n, {j, 0, k + 1}]];
    EC[n_, x_] :=  Sum[eulerian1[n, k]*x^k, {k, 0, n}];
    EZC [n_, x_] := Expand[EZ[n, x] * EC[n, x]];
    Trow[n_] := CoefficientList[EZC[n, x], x];
    Table[Trow[n], {n, 0, 8}] // Flatten (* Jean-François Alcover, Jun 07 2024, after Peter Luschny's Maple program *)
Previous Showing 11-20 of 20 results.