cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A212010 Triangle read by rows: T(n,k) = total number of parts in the last k shells of n.

Original entry on oeis.org

1, 2, 3, 3, 5, 6, 6, 9, 11, 12, 8, 14, 17, 19, 20, 15, 23, 29, 32, 34, 35, 19, 34, 42, 48, 51, 53, 54, 32, 51, 66, 74, 80, 83, 85, 86, 42, 74, 93, 108, 116, 122, 125, 127, 128, 64, 106, 138, 157, 172, 180, 186, 189, 191, 192, 83, 147, 189, 221, 240
Offset: 1

Views

Author

Omar E. Pol, Apr 26 2012

Keywords

Comments

The set of partitions of n contains n shells (see A135010). Let m and n be two positive integers such that m <= n. It appears that in any set formed by m connected shells, or m disconnected shells, or a mixture of both, the sum of all parts of the j-th column equals the total number of parts >= j in the same set (see example). More generally it appears that any of these sets has the same properties mentioned in A206563 and A207031.
It appears that the last k shells of n contain p(n-k) parts of size k, where p(n) = A000041(n). See also A182703.

Examples

			For n = 5 the illustration shows five sets containing the last k shells of 5 and below we can see that the sum of all parts of the first column equals the total number of parts in each set:
--------------------------------------------------------
.  S{5}       S{4-5}     S{3-5}     S{2-5}     S{1-5}
--------------------------------------------------------
.  The        Last       Last       Last       The
.  last       two        three      four       five
.  shell      shells     shells     shells     shells
.  of 5       of 5       of 5       of 5       of 5
--------------------------------------------------------
.
.  5          5          5          5          5
.  3+2        3+2        3+2        3+2        3+2
.    1        4+1        4+1        4+1        4+1
.      1      2+2+1      2+2+1      2+2+1      2+2+1
.      1        1+1      3+1+1      3+1+1      3+1+1
.        1        1+1      1+1+1    2+1+1+1    2+1+1+1
.          1        1+1      1+1+1    1+1+1+1  1+1+1+1+1
. ---------- ---------- ---------- ---------- ----------
.  8         14         17         19         20
.
So row 5 lists 8, 14, 17, 19, 20.
.
Triangle begins:
1;
2,    3;
3,    5,   6;
6,    9,  11,  12;
8,   14,  17,  19,  20;
15,  23,  29,  32,  34,  35;
19,  34,  42,  48,  51,  53,  54;
32,  51,  66,  74,  80,  83,  85,  86;
42,  74,  93, 108, 116, 122, 125, 127, 128;
64, 106, 138, 157, 172, 180, 186, 189, 191, 192;
		

Crossrefs

Mirror of triangle A212000. Column 1 is A138137. Right border is A006128.

Formula

T(n,k) = A006128(n) - A006128(n-k).
T(n,k) = Sum_{j=n-k+1..n} A138137(j).

A207381 Total sum of the odd-indexed parts of all partitions of n.

Original entry on oeis.org

1, 3, 7, 14, 25, 45, 72, 117, 180, 275, 403, 596, 846, 1206, 1681, 2335, 3183, 4342, 5820, 7799, 10321, 13622, 17798, 23221, 30009, 38706, 49567, 63316, 80366, 101805, 128211, 161134, 201537, 251495, 312508, 387535, 478674, 590072, 724920, 888795, 1086324
Offset: 1

Views

Author

Omar E. Pol, Feb 17 2012

Keywords

Comments

For more information see A206563.

Examples

			For n = 5, write the partitions of 5 and below write the sums of their odd-indexed parts:
.    5
.    3+2
.    4+1
.    2+2+1
.    3+1+1
.    2+1+1+1
.    1+1+1+1+1
.  ------------
.   20 + 4 + 1 = 25
The total sum of the odd-indexed parts is 25 so a(5) = 25.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; local g, h;
          if n=0 then [1, 0$2]
        elif i<1 then [0$3]
        else g:= b(n, i-1); h:= `if`(i>n, [0$3], b(n-i, i));
             [g[1]+h[1], g[2]+h[3], g[3]+h[2]+i*h[1]]
          fi
        end:
    a:= n-> b(n,n)[3]:
    seq(a(n), n=1..50); # Alois P. Heinz, Mar 12 2012
  • Mathematica
    b[n_, i_] := b[n, i] = Module[{g, h}, If[n == 0 , {1, 0, 0}, If[i < 1, {0, 0, 0},  g = b[n, i - 1]; h = If[i > n, {0, 0, 0}, b[n - i, i]]; {g[[1]] + h[[1]], g[[2]] + h[[3]], g[[3]] + h[[2]] + i*h[[1]]}]]]; a[n_] := b[n, n][[3]]; Table [a[n], {n, 1, 50}] (* Jean-François Alcover, Dec 09 2016 after Alois P. Heinz *)

Formula

a(n) = A066186(n) - A207382(n) = A066897(n) + A207382(n).

Extensions

More terms from Alois P. Heinz, Mar 12 2012

A207382 Sum of the even-indexed parts of all partitions of n.

Original entry on oeis.org

0, 1, 2, 6, 10, 21, 33, 59, 90, 145, 213, 328, 467, 684, 959, 1361, 1866, 2588, 3490, 4741, 6311, 8422, 11067, 14579, 18941, 24630, 31703, 40788, 52019, 66315, 83891, 106034, 133182, 167045, 208397, 259637, 321895, 398498, 491295, 604725, 741579, 908008
Offset: 1

Views

Author

Omar E. Pol, Feb 17 2012

Keywords

Comments

Also the sum of the floors of half the parts of all partitions of n, because the sum of one kind for a partition equals the sum of the other kind for the conjugate partition. Furthermore, this generalizes to taking m-th indices and dividing by m. - George Beck, Apr 15 2017

Examples

			For n = 5, write the partitions of 5 and below write the sums of their even-indexed parts:
. 5
. 3+2
. 4+1
. 2+2+1
. 3+1+1
. 2+1+1+1
. 1+1+1+1+1
------------
.   8 + 2   = 10
The sum of the even-indexed parts is 10, so a(5) = 10.
From _George Beck_, Apr 15 2017: (Start)
Alternatively, sum the floors of the parts divided by 2:
. 2
. 1+1
. 2+0
. 1+1+0
. 1+0+0
. 1+0+0+0
. 0+0+0+0+0
The sum is 10, so a(5) = 10. (End)
		

Crossrefs

For more information see A206563.

Programs

  • Maple
    b:= proc(n, i) option remember; local g, h;
          if n=0 then [1, 0$2]
        elif i<1 then [0$3]
        else g:= b(n, i-1); h:= `if`(i>n, [0$3], b(n-i, i));
             [g[1]+h[1], g[2]+h[3], g[3]+h[2]+i*h[1]]
          fi
        end:
    a:= n-> b(n,n)[2]:
    seq (a(n), n=1..50); # Alois P. Heinz, Mar 12 2012
  • Mathematica
    b[n_, i_] := b[n, i] = Module[{g, h}, Which[n==0, {1, 0, 0}, i<1, {0, 0, 0}, True, g = b[n, i-1]; h = If[i>n, {0, 0, 0}, b[n-i, i]]; {g[[1]] + h[[1]], g[[2]] + h[[3]], g[[3]] + h[[2]] + i*h[[1]]}]]; a[n_] := b[n, n][[2]]; Table [a[n], {n, 1, 50}] (* Jean-François Alcover, Feb 03 2017, after Alois P. Heinz *)
    a[n_]:= Total@Flatten@Quotient[IntegerPartitions[n], 2];
    Table [a[n], {n, 1, 50}] (* George Beck, Apr 15 2017 *)

Formula

a(n) = A066186(n) - A207381(n) = A207381(n) - A066897(n).

Extensions

More terms from Alois P. Heinz, Mar 12 2012

A212000 Triangle read by rows: T(n,k) = total number of parts in the last n-k+1 shells of n.

Original entry on oeis.org

1, 3, 2, 6, 5, 3, 12, 11, 9, 6, 20, 19, 17, 14, 8, 35, 34, 32, 29, 23, 15, 54, 53, 51, 48, 42, 34, 19, 86, 85, 83, 80, 74, 66, 51, 32, 128, 127, 125, 122, 116, 108, 93, 74, 42, 192, 191, 189, 186, 180, 172, 157, 138, 106, 64, 275, 274, 272, 269, 263, 255, 240
Offset: 1

Views

Author

Omar E. Pol, Apr 26 2012

Keywords

Comments

The set of partitions of n contains n shells (see A135010). Let m and n be two positive integers such that m <= n. It appears that in any set formed by m connected shells, or m disconnected shells, or a mixture of both, the sum of all parts of the j-th column equals the total number of parts >= j in the same set (see example). More generally it appears that any of these sets has the same properties mentioned in A206563 and A207031.
It appears that the last k shells of n contain p(n-k) parts of size k, where p(n) = A000041(n). See also A182703.

Examples

			For n = 5 the illustration shows five sets containing the last n-k+1 shells of 5 and below we can see that the sum of all parts of the first column equals the total number of parts in each set:
--------------------------------------------------------
.  S{1-5}     S{2-5}     S{3-5}     S{4-5}     S{5}
--------------------------------------------------------
.  The        Last       Last       Last       The
.  five       four       three      two        last
.  shells     shells     shells     shells     shell
.  of 5       of 5       of 5       of 5       of 5
--------------------------------------------------------
.
.  5          5          5          5          5
.  3+2        3+2        3+2        3+2        3+2
.  4+1        4+1        4+1        4+1          1
.  2+2+1      2+2+1      2+2+1      2+2+1          1
.  3+1+1      3+1+1      3+1+1        1+1          1
.  2+1+1+1    2+1+1+1      1+1+1        1+1          1
.  1+1+1+1+1    1+1+1+1      1+1+1        1+1          1
. ---------- ---------- ---------- ---------- ----------
. 20         19         17         14          8
.
So row 5 lists 20, 19, 17, 14, 8.
.
Triangle begins:
1;
3,     2;
6,     5,   3;
12,   11,   9,   6;
20,   19,  17,  14,  8;
35,   34,  32,  29,  23,  15;
54,   53,  51,  48,  42,  34,  19;
86,   85,  83,  80,  74,  66,  51,  32;
128, 127, 125, 122, 116, 108,  93,  74,  42;
192, 191, 189, 186, 180, 172, 157, 138, 106, 64;
		

Crossrefs

Mirror of triangle A212010. Column 1 is A006128. Right border gives A138137.

Formula

T(n,k) = A006128(n) - A006128(k-1).
T(n,k) = Sum_{j=k..n} A138137(j).

A212001 Triangle read by rows: T(n,k) = sum of all parts of the last n-k+1 shells of n.

Original entry on oeis.org

1, 4, 3, 9, 8, 5, 20, 19, 16, 11, 35, 34, 31, 26, 15, 66, 65, 62, 57, 46, 31, 105, 104, 101, 96, 85, 70, 39, 176, 175, 172, 167, 156, 141, 110, 71, 270, 269, 266, 261, 250, 235, 204, 165, 94, 420, 419, 416, 411, 400, 385, 354, 315, 244, 150, 616, 615
Offset: 1

Views

Author

Omar E. Pol, Apr 26 2012

Keywords

Comments

The set of partitions of n contains n shells (see A135010). It appears that the last k shells of n contain p(n-k) parts of size k, where p(n) = A000041(n). See also A182703.

Examples

			For n = 5 the illustration shows five sets containing the last n-k+1 shells of 5 and below the sum of all parts of each set:
--------------------------------------------------------
.  S{1-5}     S{2-5}     S{3-5}     S{4-5}     S{5}
--------------------------------------------------------
.  The        Last       Last       Last       The
.  five       four       three      two        last
.  shells     shells     shells     shells     shell
.  of 5       of 5       of 5       of 5       of 5
--------------------------------------------------------
.
.  5          5          5          5          5
.  3+2        3+2        3+2        3+2        3+2
.  4+1        4+1        4+1        4+1          1
.  2+2+1      2+2+1      2+2+1      2+2+1          1
.  3+1+1      3+1+1      3+1+1        1+1          1
.  2+1+1+1    2+1+1+1      1+1+1        1+1          1
.  1+1+1+1+1    1+1+1+1      1+1+1        1+1          1
. ---------- ---------- ---------- ---------- ----------
.     35         34         31         26         15
.
So row 5 lists 35, 34, 31, 26, 15.
.
Triangle begins:
1;
4,     3;
9,     8,   5;
20,   19,  16,  11;
35,   34,  31,  26,  15;
66,   65,  62,  57,  46,  31;
105, 104, 101,  96,  85,  70,  39;
176, 175, 172, 167, 156, 141, 110,  71;
270, 269, 266, 261, 250, 235, 204, 165,  94;
420, 419, 416, 411, 400, 385, 354, 315, 244, 150;
		

Crossrefs

Mirror of triangle A212011. Column 1 is A066186. Right border is A138879.

Formula

T(n,k) = A066186(n) - A066186(k-1).
T(n,k) = Sum_{j=k..n} A138879(j).

A208475 Triangle read by rows: T(n,k) = total sum of odd/even parts >= k in all partitions of n, if k is odd/even.

Original entry on oeis.org

1, 2, 2, 7, 2, 3, 10, 10, 3, 4, 23, 12, 11, 4, 5, 36, 30, 17, 14, 5, 6, 65, 40, 35, 18, 17, 6, 7, 94, 82, 49, 44, 22, 20, 7, 8, 160, 110, 93, 58, 48, 26, 23, 8, 9, 230, 190, 133, 108, 70, 56, 30, 26, 9, 10, 356, 260, 217, 148, 124, 76, 64, 34, 29, 10, 11
Offset: 1

Views

Author

Omar E. Pol, Feb 28 2012

Keywords

Comments

Essentially this sequence is related to A206561 in the same way as A206563 is related to A181187. See the calculation in the example section of A206563.

Examples

			Triangle begins:
1;
2,   2;
7,   2,  3;
10, 10,  3,  4;
23, 12, 11,  4,  5;
36, 30, 17, 14,  5,  6;
		

Crossrefs

Column 1-2: A066967, A066966. Right border is A000027.

Programs

  • Maple
    p:= (f, g)-> zip((x, y)-> x+y, f, g, 0):
    b:= proc(n, i) option remember; local f, g;
          if n=0 then [1]
        elif i=1 then [1, n]
        else f:= b(n, i-1); g:= `if`(i>n, [0], b(n-i, i));
             p (p (f, g), [0$i, g[1]])
          fi
        end:
    T:= proc(n) local l;
          l:= b(n, n);
          seq (add (l[i+2*j+1]*(i+2*j), j=0..(n-i)/2), i=1..n)
        end:
    seq (T(n), n=1..14);  # Alois P. Heinz, Mar 21 2012
  • Mathematica
    p[f_, g_] := With[{m = Max[Length[f], Length[g]]}, PadRight[f, m, 0] + PadRight[g, m, 0]]; b[n_, i_] := b[n, i] = Module[{f, g}, Which[n == 0, {1}, i == 1, {1, n}, True, f = b[n, i-1]; g = If[i>n, {0}, b[n-i, i]]; p[p[f, g], Append[Array[0&, i], g[[1]]]]]]; T[n_] := Module[{l}, l = b[n, n]; Table[Sum[l[[i+2j+1]]*(i+2j), {j, 0, (n-i)/2}], {i, 1, n}]]; Table[T[n], {n, 1, 14}] // Flatten (* Jean-François Alcover, Mar 11 2015, after Alois P. Heinz *)

Extensions

More terms from Alois P. Heinz, Mar 21 2012

A208476 Triangle read by rows: T(n,k) = total sum of odd/even parts >= k in the last section of the set of partitions of n, if k is odd/even.

Original entry on oeis.org

1, 1, 2, 5, 0, 3, 3, 8, 0, 4, 13, 2, 8, 0, 5, 13, 18, 6, 10, 0, 6
Offset: 1

Views

Author

Omar E. Pol, Feb 28 2012

Keywords

Comments

Essentially this sequence is related to A206562 in the same way as A207032 is related to A207031 and also in the same way as A206563 is related to A181187. See the calculation in the example section of A206563.

Examples

			Triangle begins:
1;
1,   2;
5,   0,  3;
3,   8,  0,  4;
13,  2,  8,  0,  5;
13, 18,  6, 10,  0,  6;
		

Crossrefs

A207033 Total number of parts >= 3 in all partitions of n.

Original entry on oeis.org

0, 0, 1, 2, 4, 8, 13, 22, 35, 54, 80, 121, 172, 247, 347, 484, 661, 906, 1215, 1632, 2162, 2855, 3730, 4871, 6290, 8111, 10381, 13252, 16802, 21269, 26750, 33583, 41948, 52277, 64862, 80326, 99055, 121922, 149541, 183052, 223350, 272038, 330343, 400450, 484154
Offset: 1

Views

Author

Omar E. Pol, Feb 18 2012

Keywords

Examples

			a(4) = 2, because 2 parts have size >= 3 in all partitions of 4: [1,1,1,1], [1,1,2], [2,2], [1,3], [4].
		

Crossrefs

Column 3 of A181187.

Programs

  • Maple
    b:= proc(n, i) option remember; local f, g;
          if n=0 then [1, 0]
        elif i<1 then [0, 0]
        elif i>n then b(n, i-1)
        else f:= b(n, i-1); g:= b(n-i, i);
             [f[1]+g[1], f[2]+g[2] +`if`(i>2, g[1], 0)]
          fi
        end:
    a:= n-> b(n, n)[2]:
    seq(a(n), n=1..50);  # Alois P. Heinz, Feb 19 2012
  • Mathematica
    b[n_, i_] := b[n, i] = Module[{f, g}, Which[n == 0, {1, 0}, i < 1, {0, 0}, i > n, b[n, i - 1], True, f = b[n, i - 1]; g = b[n - i, i]; {f[[1]] + g[[1]], f[[2]] + g[[2]] + If[i > 2, g[[1]], 0]}]];
    a[n_] := b[n, n][[2]];
    Array[a, 50] (* Jean-François Alcover, Nov 12 2020, after Alois P. Heinz *)

Formula

G.f.: Sum_{k>=1} x^(3*k)/(1 - x^k) / Product_{j>=1} (1 - x^j). - Ilya Gutkovskiy, Mar 05 2021

Extensions

More terms from Alois P. Heinz, Feb 18 2012
Previous Showing 11-18 of 18 results.