A212010
Triangle read by rows: T(n,k) = total number of parts in the last k shells of n.
Original entry on oeis.org
1, 2, 3, 3, 5, 6, 6, 9, 11, 12, 8, 14, 17, 19, 20, 15, 23, 29, 32, 34, 35, 19, 34, 42, 48, 51, 53, 54, 32, 51, 66, 74, 80, 83, 85, 86, 42, 74, 93, 108, 116, 122, 125, 127, 128, 64, 106, 138, 157, 172, 180, 186, 189, 191, 192, 83, 147, 189, 221, 240
Offset: 1
For n = 5 the illustration shows five sets containing the last k shells of 5 and below we can see that the sum of all parts of the first column equals the total number of parts in each set:
--------------------------------------------------------
. S{5} S{4-5} S{3-5} S{2-5} S{1-5}
--------------------------------------------------------
. The Last Last Last The
. last two three four five
. shell shells shells shells shells
. of 5 of 5 of 5 of 5 of 5
--------------------------------------------------------
.
. 5 5 5 5 5
. 3+2 3+2 3+2 3+2 3+2
. 1 4+1 4+1 4+1 4+1
. 1 2+2+1 2+2+1 2+2+1 2+2+1
. 1 1+1 3+1+1 3+1+1 3+1+1
. 1 1+1 1+1+1 2+1+1+1 2+1+1+1
. 1 1+1 1+1+1 1+1+1+1 1+1+1+1+1
. ---------- ---------- ---------- ---------- ----------
. 8 14 17 19 20
.
So row 5 lists 8, 14, 17, 19, 20.
.
Triangle begins:
1;
2, 3;
3, 5, 6;
6, 9, 11, 12;
8, 14, 17, 19, 20;
15, 23, 29, 32, 34, 35;
19, 34, 42, 48, 51, 53, 54;
32, 51, 66, 74, 80, 83, 85, 86;
42, 74, 93, 108, 116, 122, 125, 127, 128;
64, 106, 138, 157, 172, 180, 186, 189, 191, 192;
A207381
Total sum of the odd-indexed parts of all partitions of n.
Original entry on oeis.org
1, 3, 7, 14, 25, 45, 72, 117, 180, 275, 403, 596, 846, 1206, 1681, 2335, 3183, 4342, 5820, 7799, 10321, 13622, 17798, 23221, 30009, 38706, 49567, 63316, 80366, 101805, 128211, 161134, 201537, 251495, 312508, 387535, 478674, 590072, 724920, 888795, 1086324
Offset: 1
For n = 5, write the partitions of 5 and below write the sums of their odd-indexed parts:
. 5
. 3+2
. 4+1
. 2+2+1
. 3+1+1
. 2+1+1+1
. 1+1+1+1+1
. ------------
. 20 + 4 + 1 = 25
The total sum of the odd-indexed parts is 25 so a(5) = 25.
-
b:= proc(n, i) option remember; local g, h;
if n=0 then [1, 0$2]
elif i<1 then [0$3]
else g:= b(n, i-1); h:= `if`(i>n, [0$3], b(n-i, i));
[g[1]+h[1], g[2]+h[3], g[3]+h[2]+i*h[1]]
fi
end:
a:= n-> b(n,n)[3]:
seq(a(n), n=1..50); # Alois P. Heinz, Mar 12 2012
-
b[n_, i_] := b[n, i] = Module[{g, h}, If[n == 0 , {1, 0, 0}, If[i < 1, {0, 0, 0}, g = b[n, i - 1]; h = If[i > n, {0, 0, 0}, b[n - i, i]]; {g[[1]] + h[[1]], g[[2]] + h[[3]], g[[3]] + h[[2]] + i*h[[1]]}]]]; a[n_] := b[n, n][[3]]; Table [a[n], {n, 1, 50}] (* Jean-François Alcover, Dec 09 2016 after Alois P. Heinz *)
A207382
Sum of the even-indexed parts of all partitions of n.
Original entry on oeis.org
0, 1, 2, 6, 10, 21, 33, 59, 90, 145, 213, 328, 467, 684, 959, 1361, 1866, 2588, 3490, 4741, 6311, 8422, 11067, 14579, 18941, 24630, 31703, 40788, 52019, 66315, 83891, 106034, 133182, 167045, 208397, 259637, 321895, 398498, 491295, 604725, 741579, 908008
Offset: 1
For n = 5, write the partitions of 5 and below write the sums of their even-indexed parts:
. 5
. 3+2
. 4+1
. 2+2+1
. 3+1+1
. 2+1+1+1
. 1+1+1+1+1
------------
. 8 + 2 = 10
The sum of the even-indexed parts is 10, so a(5) = 10.
From _George Beck_, Apr 15 2017: (Start)
Alternatively, sum the floors of the parts divided by 2:
. 2
. 1+1
. 2+0
. 1+1+0
. 1+0+0
. 1+0+0+0
. 0+0+0+0+0
The sum is 10, so a(5) = 10. (End)
-
b:= proc(n, i) option remember; local g, h;
if n=0 then [1, 0$2]
elif i<1 then [0$3]
else g:= b(n, i-1); h:= `if`(i>n, [0$3], b(n-i, i));
[g[1]+h[1], g[2]+h[3], g[3]+h[2]+i*h[1]]
fi
end:
a:= n-> b(n,n)[2]:
seq (a(n), n=1..50); # Alois P. Heinz, Mar 12 2012
-
b[n_, i_] := b[n, i] = Module[{g, h}, Which[n==0, {1, 0, 0}, i<1, {0, 0, 0}, True, g = b[n, i-1]; h = If[i>n, {0, 0, 0}, b[n-i, i]]; {g[[1]] + h[[1]], g[[2]] + h[[3]], g[[3]] + h[[2]] + i*h[[1]]}]]; a[n_] := b[n, n][[2]]; Table [a[n], {n, 1, 50}] (* Jean-François Alcover, Feb 03 2017, after Alois P. Heinz *)
a[n_]:= Total@Flatten@Quotient[IntegerPartitions[n], 2];
Table [a[n], {n, 1, 50}] (* George Beck, Apr 15 2017 *)
A212000
Triangle read by rows: T(n,k) = total number of parts in the last n-k+1 shells of n.
Original entry on oeis.org
1, 3, 2, 6, 5, 3, 12, 11, 9, 6, 20, 19, 17, 14, 8, 35, 34, 32, 29, 23, 15, 54, 53, 51, 48, 42, 34, 19, 86, 85, 83, 80, 74, 66, 51, 32, 128, 127, 125, 122, 116, 108, 93, 74, 42, 192, 191, 189, 186, 180, 172, 157, 138, 106, 64, 275, 274, 272, 269, 263, 255, 240
Offset: 1
For n = 5 the illustration shows five sets containing the last n-k+1 shells of 5 and below we can see that the sum of all parts of the first column equals the total number of parts in each set:
--------------------------------------------------------
. S{1-5} S{2-5} S{3-5} S{4-5} S{5}
--------------------------------------------------------
. The Last Last Last The
. five four three two last
. shells shells shells shells shell
. of 5 of 5 of 5 of 5 of 5
--------------------------------------------------------
.
. 5 5 5 5 5
. 3+2 3+2 3+2 3+2 3+2
. 4+1 4+1 4+1 4+1 1
. 2+2+1 2+2+1 2+2+1 2+2+1 1
. 3+1+1 3+1+1 3+1+1 1+1 1
. 2+1+1+1 2+1+1+1 1+1+1 1+1 1
. 1+1+1+1+1 1+1+1+1 1+1+1 1+1 1
. ---------- ---------- ---------- ---------- ----------
. 20 19 17 14 8
.
So row 5 lists 20, 19, 17, 14, 8.
.
Triangle begins:
1;
3, 2;
6, 5, 3;
12, 11, 9, 6;
20, 19, 17, 14, 8;
35, 34, 32, 29, 23, 15;
54, 53, 51, 48, 42, 34, 19;
86, 85, 83, 80, 74, 66, 51, 32;
128, 127, 125, 122, 116, 108, 93, 74, 42;
192, 191, 189, 186, 180, 172, 157, 138, 106, 64;
A212001
Triangle read by rows: T(n,k) = sum of all parts of the last n-k+1 shells of n.
Original entry on oeis.org
1, 4, 3, 9, 8, 5, 20, 19, 16, 11, 35, 34, 31, 26, 15, 66, 65, 62, 57, 46, 31, 105, 104, 101, 96, 85, 70, 39, 176, 175, 172, 167, 156, 141, 110, 71, 270, 269, 266, 261, 250, 235, 204, 165, 94, 420, 419, 416, 411, 400, 385, 354, 315, 244, 150, 616, 615
Offset: 1
For n = 5 the illustration shows five sets containing the last n-k+1 shells of 5 and below the sum of all parts of each set:
--------------------------------------------------------
. S{1-5} S{2-5} S{3-5} S{4-5} S{5}
--------------------------------------------------------
. The Last Last Last The
. five four three two last
. shells shells shells shells shell
. of 5 of 5 of 5 of 5 of 5
--------------------------------------------------------
.
. 5 5 5 5 5
. 3+2 3+2 3+2 3+2 3+2
. 4+1 4+1 4+1 4+1 1
. 2+2+1 2+2+1 2+2+1 2+2+1 1
. 3+1+1 3+1+1 3+1+1 1+1 1
. 2+1+1+1 2+1+1+1 1+1+1 1+1 1
. 1+1+1+1+1 1+1+1+1 1+1+1 1+1 1
. ---------- ---------- ---------- ---------- ----------
. 35 34 31 26 15
.
So row 5 lists 35, 34, 31, 26, 15.
.
Triangle begins:
1;
4, 3;
9, 8, 5;
20, 19, 16, 11;
35, 34, 31, 26, 15;
66, 65, 62, 57, 46, 31;
105, 104, 101, 96, 85, 70, 39;
176, 175, 172, 167, 156, 141, 110, 71;
270, 269, 266, 261, 250, 235, 204, 165, 94;
420, 419, 416, 411, 400, 385, 354, 315, 244, 150;
A208475
Triangle read by rows: T(n,k) = total sum of odd/even parts >= k in all partitions of n, if k is odd/even.
Original entry on oeis.org
1, 2, 2, 7, 2, 3, 10, 10, 3, 4, 23, 12, 11, 4, 5, 36, 30, 17, 14, 5, 6, 65, 40, 35, 18, 17, 6, 7, 94, 82, 49, 44, 22, 20, 7, 8, 160, 110, 93, 58, 48, 26, 23, 8, 9, 230, 190, 133, 108, 70, 56, 30, 26, 9, 10, 356, 260, 217, 148, 124, 76, 64, 34, 29, 10, 11
Offset: 1
Triangle begins:
1;
2, 2;
7, 2, 3;
10, 10, 3, 4;
23, 12, 11, 4, 5;
36, 30, 17, 14, 5, 6;
-
p:= (f, g)-> zip((x, y)-> x+y, f, g, 0):
b:= proc(n, i) option remember; local f, g;
if n=0 then [1]
elif i=1 then [1, n]
else f:= b(n, i-1); g:= `if`(i>n, [0], b(n-i, i));
p (p (f, g), [0$i, g[1]])
fi
end:
T:= proc(n) local l;
l:= b(n, n);
seq (add (l[i+2*j+1]*(i+2*j), j=0..(n-i)/2), i=1..n)
end:
seq (T(n), n=1..14); # Alois P. Heinz, Mar 21 2012
-
p[f_, g_] := With[{m = Max[Length[f], Length[g]]}, PadRight[f, m, 0] + PadRight[g, m, 0]]; b[n_, i_] := b[n, i] = Module[{f, g}, Which[n == 0, {1}, i == 1, {1, n}, True, f = b[n, i-1]; g = If[i>n, {0}, b[n-i, i]]; p[p[f, g], Append[Array[0&, i], g[[1]]]]]]; T[n_] := Module[{l}, l = b[n, n]; Table[Sum[l[[i+2j+1]]*(i+2j), {j, 0, (n-i)/2}], {i, 1, n}]]; Table[T[n], {n, 1, 14}] // Flatten (* Jean-François Alcover, Mar 11 2015, after Alois P. Heinz *)
A208476
Triangle read by rows: T(n,k) = total sum of odd/even parts >= k in the last section of the set of partitions of n, if k is odd/even.
Original entry on oeis.org
1, 1, 2, 5, 0, 3, 3, 8, 0, 4, 13, 2, 8, 0, 5, 13, 18, 6, 10, 0, 6
Offset: 1
Triangle begins:
1;
1, 2;
5, 0, 3;
3, 8, 0, 4;
13, 2, 8, 0, 5;
13, 18, 6, 10, 0, 6;
A207033
Total number of parts >= 3 in all partitions of n.
Original entry on oeis.org
0, 0, 1, 2, 4, 8, 13, 22, 35, 54, 80, 121, 172, 247, 347, 484, 661, 906, 1215, 1632, 2162, 2855, 3730, 4871, 6290, 8111, 10381, 13252, 16802, 21269, 26750, 33583, 41948, 52277, 64862, 80326, 99055, 121922, 149541, 183052, 223350, 272038, 330343, 400450, 484154
Offset: 1
a(4) = 2, because 2 parts have size >= 3 in all partitions of 4: [1,1,1,1], [1,1,2], [2,2], [1,3], [4].
-
b:= proc(n, i) option remember; local f, g;
if n=0 then [1, 0]
elif i<1 then [0, 0]
elif i>n then b(n, i-1)
else f:= b(n, i-1); g:= b(n-i, i);
[f[1]+g[1], f[2]+g[2] +`if`(i>2, g[1], 0)]
fi
end:
a:= n-> b(n, n)[2]:
seq(a(n), n=1..50); # Alois P. Heinz, Feb 19 2012
-
b[n_, i_] := b[n, i] = Module[{f, g}, Which[n == 0, {1, 0}, i < 1, {0, 0}, i > n, b[n, i - 1], True, f = b[n, i - 1]; g = b[n - i, i]; {f[[1]] + g[[1]], f[[2]] + g[[2]] + If[i > 2, g[[1]], 0]}]];
a[n_] := b[n, n][[2]];
Array[a, 50] (* Jean-François Alcover, Nov 12 2020, after Alois P. Heinz *)
Comments