A210875
Triangular array U(n,k) of coefficients of polynomials defined in Comments.
Original entry on oeis.org
1, 1, 1, 3, 4, 2, 4, 7, 5, 3, 5, 9, 10, 9, 5, 6, 11, 13, 17, 14, 8, 7, 13, 16, 22, 27, 23, 13, 8, 15, 19, 27, 35, 44, 37, 21, 9, 17, 22, 32, 43, 57, 71, 60, 34, 10, 19, 25, 37, 51, 70, 92, 115, 97, 55, 11, 21, 28, 42, 59, 83, 113, 149, 186, 157, 89, 12, 23, 31, 47, 67
Offset: 1
First six rows:
1
1...1
3...4....2
4...7....5....3
5...9....10...9....5
6...11...13...17...14...8
First three polynomials u(n,x): 1, 1 + 3x, 3 + 4x + 2x^2.
-
u[1, x_] := 1; u[2, x_] := x + 1; z = 14;
u[n_, x_] := x*u[n - 1, x] + (x^2)*u[n - 2, x] + n*(x + 1);
Table[Expand[u[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A210875 *)
A210881
Triangular array U(n,k) of coefficients of polynomials defined in Comments.
Original entry on oeis.org
1, 1, 3, 3, 4, 4, 4, 7, 5, 7, 5, 9, 10, 9, 11, 6, 11, 13, 17, 14, 18, 7, 13, 16, 22, 27, 23, 29, 8, 15, 19, 27, 35, 44, 37, 47, 9, 17, 22, 32, 43, 57, 71, 60, 76, 10, 19, 25, 37, 51, 70, 92, 115, 97, 123, 11, 21, 28, 42, 59, 83, 113, 149, 186, 157, 199, 12, 23, 31
Offset: 1
First six rows:
1
1...3
3...4....4
4...7....5....7
5...9....10...9....11
6...11...13...17...14...18
First three polynomials u(n,x): 1, 1 + 3x, 3 + 4x + 4x^2.
-
u[1, x_] := 1; u[2, x_] := 3 x + 1; z = 14;
u[n_, x_] := x*u[n - 1, x] + (x^2)*u[n - 2, x] + n*(x + 1);
Table[Expand[u[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A210881 *)
Original entry on oeis.org
1, 1, 1, 0, 2, 1, 0, 2, 3, 1, 0, 2, 5, 4, 1, 0, 2, 7, 9, 5, 1, 0, 2, 9, 16, 14, 6, 1, 0, 2, 11, 25, 30, 20, 7, 1, 0, 2, 13, 36, 55, 50, 27, 8, 1, 0, 2, 15, 49, 91, 105, 77, 35, 9, 1
Offset: 1
The triangle T(n, k) begins:
n\k 0 1 2 3 4 5 6 7 8 9 10 ...
0: 1
1: 1 1
2: 0 2 1
3: 0 2 3 1
4: 0 2 5 4 1
5: 0 2 7 9 5 1
6: 0 2 9 16 14 6 1
7: 0 2 11 25 30 20 7 1
8: 0 2 13 36 55 50 27 8 1
9: 0 2 15 49 91 105 77 35 9 1
10: 0 2 17 64 140 196 182 112 44 10 1
... Reformatted. - _Wolfdieter Lang_, Jan 06 2015
Edited: Added Riordan property (see Philippe Deléham comment) in name. -
Wolfdieter Lang, Jan 06 2015
A185045
Triangle of coefficients of polynomials u(n,x) jointly generated with A208659; see the Formula section.
Original entry on oeis.org
1, 1, 2, 1, 6, 4, 1, 10, 16, 8, 1, 14, 36, 40, 16, 1, 18, 64, 112, 96, 32, 1, 22, 100, 240, 320, 224, 64, 1, 26, 144, 440, 800, 864, 512, 128, 1, 30, 196, 728, 1680, 2464, 2240, 1152, 256, 1, 34, 256, 1120, 3136, 5824, 7168, 5632, 2560, 512, 1, 38, 324
Offset: 1
First five rows:
1
1...2
1...6...4
1...10...16...8
1...14...36...40...16
First five polynomials u(n,x):
1
1 + 2x
1 + 6x + 4x^2
1 + 10x + 16x^2 + 8x^3
1 + 14x + 36x^2 + 40x^3 + 16x^4
-
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := u[n - 1, x] + 2 x*v[n - 1, x];
v[n_, x_] := u[n - 1, x] + 2 x*v[n - 1, x] + 1;
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A185045 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A208659 *)
A207611
Triangle of coefficients of polynomials v(n,x) jointly generated with A207610; see Formula section.
Original entry on oeis.org
1, 2, 1, 3, 2, 1, 5, 4, 2, 1, 8, 8, 5, 2, 1, 13, 15, 11, 6, 2, 1, 21, 28, 23, 14, 7, 2, 1, 34, 51, 47, 32, 17, 8, 2, 1, 55, 92, 93, 70, 42, 20, 9, 2, 1, 89, 164, 181, 148, 97, 53, 23, 10, 2, 1, 144, 290, 346, 306, 217, 128, 65, 26, 11, 2, 1, 233, 509, 653, 619, 472
Offset: 1
First five rows:
1;
2, 1;
3, 2, 1;
5, 4, 2, 1;
8, 8, 5, 2, 1;
From _Philippe Deléham_, Mar 25 2012: (Start)
(0, 2, -1/2, -1/2, 0, 0, ...) DELTA (1, 0, -1, 1, 0, 0, ...) begins:
1;
0, 1;
0, 2, 1;
0, 3, 2, 1;
0, 5, 4, 2, 1;
0, 8, 8, 5, 2, 1;
0, 13, 15, 11, 6, 2, 1;
0, 21, 28, 23, 14, 7, 2, 1; (End)
-
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := u[n - 1, x] + v[n - 1, x]
v[n_, x_] := u[n - 1, x] + x*v[n - 1, x] + 1
Table[Factor[u[n, x]], {n, 1, z}]
Table[Factor[v[n, x]], {n, 1, z}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A207610 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A207611 *)
T[ n_, k_] := Which[k<0 || n<0, 0, n<2, Boole[k<=n] + Boole[k==0&&n==1], True, T[n, k] = T[n-1, k] + T[n-1, k-1] + T[n-2, k] - T[n-2, k-1] ]; (* Michael Somos, Sep 19 2024 *)
-
{T(n, k) = if(k<0 || n<0, 0, n<2, (k<=n) + (k==0 && n==1), T(n-1, k) + T(n-1, k-1) + T(n-2, k) - T(n-2, k-1) )}; /* Michael Somos, Sep 19 2024 */
-
from sympy import Poly
from sympy.abc import x
def u(n, x): return 1 if n==1 else u(n - 1, x) + v(n - 1, x)
def v(n, x): return 1 if n==1 else u(n - 1, x) + x*v(n - 1, x) + 1
def a(n): return Poly(v(n, x), x).all_coeffs()[::-1]
for n in range(1, 13): print(a(n)) # Indranil Ghosh, May 28 2017
A207613
Triangle of coefficients of polynomials v(n,x) jointly generated with A207612; see Formula section.
Original entry on oeis.org
1, 2, 2, 3, 4, 4, 5, 8, 8, 8, 8, 16, 20, 16, 16, 13, 30, 44, 48, 32, 32, 21, 56, 92, 112, 112, 64, 64, 34, 102, 188, 256, 272, 256, 128, 128, 55, 184, 372, 560, 672, 640, 576, 256, 256, 89, 328, 724, 1184, 1552, 1696, 1472, 1280, 512, 512, 144, 580, 1384
Offset: 1
First five rows:
1
2 2
3 4 4
5 8 8 8
8 16 20 16 16
-
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := u[n - 1, x] + v[n - 1, x]
v[n_, x_] := u[n - 1, x] + 2 x*v[n - 1, x] + 1
Table[Factor[u[n, x]], {n, 1, z}]
Table[Factor[v[n, x]], {n, 1, z}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A207612 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A207613 *)
A207622
Triangle of coefficients of polynomials u(n,x) jointly generated with A207623; see the Formula section.
Original entry on oeis.org
1, 2, 4, 2, 7, 8, 11, 22, 4, 16, 50, 24, 22, 100, 88, 8, 29, 182, 252, 64, 37, 308, 616, 296, 16, 46, 492, 1344, 1032, 160, 56, 750, 2688, 3000, 896, 32, 67, 1100, 5016, 7656, 3696, 384, 79, 1562, 8844, 17688, 12496, 2528, 64, 92, 2158, 14872, 37752
Offset: 1
First five rows:
1
2
4 2
7 8
11 22 4
-
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := u[n - 1, x] + v[n - 1, x]
v[n_, x_] := 2 x*u[n - 1, x] + v[n - 1, x] + 1
Table[Factor[u[n, x]], {n, 1, z}]
Table[Factor[v[n, x]], {n, 1, z}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A207622 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A207623 *)
A208330
Triangle of coefficients of polynomials u(n,x) jointly generated with A208331; see the Formula section.
Original entry on oeis.org
1, 1, 1, 1, 2, 3, 1, 3, 9, 5, 1, 4, 18, 20, 11, 1, 5, 30, 50, 55, 21, 1, 6, 45, 100, 165, 126, 43, 1, 7, 63, 175, 385, 441, 301, 85, 1, 8, 84, 280, 770, 1176, 1204, 680, 171, 1, 9, 108, 420, 1386, 2646, 3612, 3060, 1539, 341, 1, 10, 135, 600, 2310, 5292, 9030
Offset: 1
First five rows:
1
1...1
1...2...3
1...3...9....5
1...4...18...20...11
First five polynomials u(n,x):
1, 1 + x, 1 + 2x + 3x^2, 1 + 3x + 9x^2 + 5x^3, 1 + 4x + 18x^2 + 20x^3 + 11x^4.
(1, 0, 0, 1, 0, 0, ...) DELTA (0, 1, 2, -2, 0, 0, ...) begins :
1
1, 0
1, 1, 0
1, 2, 3, 0
1, 3, 9, 5, 0
1, 4, 18, 20, 11, 0
1, 5, 30, 50, 55, 21, 0. - _Philippe Deléham_, Mar 18 2012
-
u[1, x_] := 1; v[1, x_] := 1; z = 13;
u[n_, x_] := u[n - 1, x] + x*v[n - 1, x];
v[n_, x_] := 2 x*u[n - 1, x] + (x + 1)*v[n - 1, x];
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A208330 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A208331 *)
A208344
Triangle of coefficients of polynomials u(n,x) jointly generated with A208345; see the Formula section.
Original entry on oeis.org
1, 1, 1, 1, 1, 3, 1, 1, 4, 7, 1, 1, 5, 10, 17, 1, 1, 6, 13, 27, 41, 1, 1, 7, 16, 38, 71, 99, 1, 1, 8, 19, 50, 106, 186, 239, 1, 1, 9, 22, 63, 146, 294, 484, 577, 1, 1, 10, 25, 77, 191, 424, 806, 1253, 1393, 1, 1, 11, 28, 92, 241, 577, 1212, 2191, 3229, 3363, 1, 1, 12
Offset: 1
First five rows:
1;
1, 1;
1, 1, 3;
1, 1, 4, 7;
1, 1, 5, 10, 17;
First five polynomials u(n,x):
1
1 + x
1 + x + 3x^2
1 + x + 4x^2 + 7x^3
1 + x + 5x^2 + 10x^3 + 17x^4.
From _Philippe Deléham_, Apr 09 2012: (Start)
(1, 0, -1, 1, 0, 0, ...) DELTA (0, 1, 2, -1, 0, 0, ...) begins:
1;
1, 0;
1, 1, 0;
1, 1, 3, 0;
1, 1, 4, 7, 0;
1, 1, 5, 10, 17, 0;
1, 1, 6, 13, 27, 41, 0; (End)
-
u[1, x_] := 1; v[1, x_] := 1; z = 13;
u[n_, x_] := u[n - 1, x] + x*v[n - 1, x];
v[n_, x_] := x*u[n - 1, x] + 2 x*v[n - 1, x];
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A208344 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A208345 *)
Table[u[n, x] /. x -> 1, {n, 1, z}]
Table[v[n, x] /. x -> 1, {n, 1, z}]
A208659
Triangle of coefficients of polynomials v(n,x) jointly generated with A185045; see the Formula section.
Original entry on oeis.org
1, 2, 2, 2, 6, 4, 2, 10, 16, 8, 2, 14, 36, 40, 16, 2, 18, 64, 112, 96, 32, 2, 22, 100, 240, 320, 224, 64, 2, 26, 144, 440, 800, 864, 512, 128, 2, 30, 196, 728, 1680, 2464, 2240, 1152, 256, 2, 34, 256, 1120, 3136, 5824, 7168, 5632, 2560, 512, 2, 38, 324
Offset: 1
First five rows:
1;
2, 2;
2, 6, 4;
2, 10, 16, 8;
2, 14, 36, 40, 16;
First five polynomials v(n,x):
1
2 + 2x = 2*(1+x)
2 + 6x + 4x^2 = 2*(1+x)*(1+2x)
2 + 10x + 16x^2 + 8x^3 = 2*(1+x)*(1+2x)^2
2 + 14x + 36x^2 + 40x^3 + 16x^4 = 2*(1+x)*(1+2x)^3
-
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := u[n - 1, x] + 2 x*v[n - 1, x];
v[n_, x_] := u[n - 1, x] + 2 x*v[n - 1, x] + 1;
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A185045 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A208659 *)
(* Using the function RiordanSquare defined in A321620 we also have: *)
A208659 = RiordanSquare[(1 + x)/(1 - x), 16] // Flatten (* Gerry Martens, Oct 16 2022 *)
Comments