A059934
Third step in Goodstein sequences, i.e., g(5) if g(2)=n: write g(4)=A057650(n) in hereditary representation base 4, bump to base 5, then subtract 1 to produce g(5).
Original entry on oeis.org
0, 2, 60, 467, 3125, 3127, 6310, 9842, 15625, 15627, 15685, 16092, 18750, 18752, 53793641718868912174424175024032593379100060
Offset: 2
a(12) = 15685 since with g(2) = 12 = 2^(2 + 1) + 2^2, we get g(3) = 3^(3 + 1) + 3^3-1 = 107 = 3^(3 + 1) + 2*3^2 + 2*3 + 2, g(4) = 4^(4 + 1) + 2*4^2 + 2*4 + 2-1 = 1065 and g(5) = 5^(5 + 1) + 2*5^2 + 2*5^1 + 1-1.
-
-- See Link
-
from sympy.ntheory.factor_ import digits
def bump(n,b):
s=digits(n,b)[1:]
l=len(s)
return sum(s[i]*(b+1)**bump(l-i-1,b) for i in range(l) if s[i])
def A059934(n):
for i in range(2,5):
n=bump(n,i)-1
return n # Pontus von Brömssen, Sep 20 2020
A059935
Fourth step in Goodstein sequences, i.e., g(6) if g(2)=n: write g(5)=A059934(n) in hereditary representation base 5, bump to base 6, then subtract 1 to produce g(6).
Original entry on oeis.org
1, 83, 775, 46655, 46657, 93395, 140743, 279935, 279937, 280019, 280711, 326591, 326593, 19916489515870532960258562190639398471599239042185934648024761145811
Offset: 3
a(12) = 280019 since with g(2) = 12 = 2^(2 + 1) + 2^2, we get g(3) = 3^(3 + 1) + 3^3-1 = 107 = 3^(3 + 1) + 2*3^2 + 2*3 + 2, g(4) = 4^(4 + 1) + 2*4^2 + 2*4 + 1 = 1065, g(5) = 5^(5 + 1) + 2*5^2 + 2*5 = 15685 and g(6) = 6^(6 + 1) + 2*6^2 + 6 + 5 = 280019.
-
-- See Link
-
from sympy.ntheory.factor_ import digits
def bump(n,b):
s=digits(n,b)[1:]
l=len(s)
return sum(s[i]*(b+1)**bump(l-i-1,b) for i in range(l) if s[i])
def A059935(n):
for i in range(2,6):
n=bump(n,i)-1
return n # Pontus von Brömssen, Sep 20 2020
A271554
a(n) = G_n(7), where G is the Goodstein function defined in A266201.
Original entry on oeis.org
7, 30, 259, 3127, 46657, 823543, 16777215, 37665879, 77777775, 150051213, 273624711, 475842915, 794655639, 1281445305, 2004318063, 3051893870, 4537630813, 6604718946, 9431578931, 13238000758, 18291957825, 24917131658, 33501182551, 44504801406, 58471578053, 76038721330
Offset: 0
G_1(7) = B_2(7) - 1 = B[2](2^2 + 2 + 1) - 1 = 3^3 + 3 + 1 - 1 = 30;
G_2(7) = B_3(G_1(7)) - 1 = B[3](3^3 + 3) - 1 = 4^4 + 4 - 1 = 259;
G_3(7) = B_4(G_2(7)) - 1 = 5^5 + 3 - 1 = 3127;
G_4(7) = B_5(G_3(7)) - 1 = 6^6 + 2 - 1 = 46657;
G_5(7) = B_6(G_4(7)) - 1 = 7^7 + 1 - 1 = 823543;
G_6(7) = B_7(G_5(7)) - 1 = 8^8 - 1 = 16777215;
G_7(7) = B_8(G_6(7)) - 1 = 7*9^7 + 7*9^6 + 7*9^5 + 7*9^4 + 7*9^3 + 7*9^2 + 7*9 + 7 - 1 = 37665879.
-
lista(nn) = {print1(a = 7, ", "); for (n=2, nn, pd = Pol(digits(a, n)); q = sum(k=0, poldegree(pd), if (c=polcoeff(pd, k), c*x^subst(Pol(digits(k, n)), x, n+1), 0)); a = subst(q, x, n+1) - 1; print1(a, ", "); ); }
A265034
Weak Goodstein sequence beginning with 266.
Original entry on oeis.org
266, 6590, 65601, 390750, 1679831, 5765085, 16777579, 43047173, 100000551, 214359541, 429982475, 815731628, 1475790101, 2562891818, 4294968647, 6975758960, 11019962273, 16983564926, 25600002083, 37822861652, 54875876045, 78310988018, 110075317151, 152587893847
Offset: 0
For other Goodstein sequences see
A014221,
A056004,
A056041,
A056193,
A057650,
A059933,
A059934,
A059935,
A059936,
A137411,
A211378,
A215409,
A222112,
A222113,
A222117.
A271555
a(n) = G_n(8), where G is the Goodstein function defined in A266201.
Original entry on oeis.org
8, 80, 553, 6310, 93395, 1647195, 33554571, 774841151, 20000000211, 570623341475, 17832200896811, 605750213184854, 22224013651116433, 875787780761719208, 36893488147419103751, 1654480523772673528938, 78692816150593075151501, 3956839311320627178248684
Offset: 0
G_1(8) = B_2(8)-1 = B_2(2^(2+1))-1 = 3^(3+1)-1 = 80;
G_2(8) = B_3(2*3^3+2*3^2+2*3+2)-1 = 2*4^4+2*4^2+2*4+2-1 = 553;
G_3(8) = B_4(2*4^4+2*4^2+2*4+1)-1 = 2*5^5+2*5^2+2*5+1-1 = 6310;
G_4(8) = B_5(2*5^5+2*5^2+2*5)-1 = 2*6^6+2*6^2+2*6-1 = 93395;
G_5(8) = B_6(2*6^6+2*6^2+6+5)-1 = 2*7^7+2*7^2+7+5-1 = 1647195;
G_6(8) = B_7(2*7^7+2*7^2+7+4)-1 = 2*8^8+2*8^2+8+4-1 = 33554571;
G_7(8) = B_8(2*8^8+2*8^2+8+3)-1 = 2*9^9+2*9^2+9+3-1 = 774841151.
-
lista(nn) = {print1(a = 8, ", "); for (n=2, nn, pd = Pol(digits(a, n)); q = sum(k=0, poldegree(pd), if (c=polcoeff(pd, k), c*x^subst(Pol(digits(k, n)), x, n+1), 0)); a = subst(q, x, n+1) - 1; print1(a, ", "); ); }
A271556
a(n) = G_n(9), where G is the Goodstein function defined in A266201.
Original entry on oeis.org
9, 81, 1023, 9842, 140743, 2471826, 50333399, 1162263921, 30000003325, 855935016215, 26748301350411, 908625319783885, 33336020476682897, 1313681671142588955, 55340232221128667935, 2481720785659010308168, 118039224225889612744771, 5935258966980940767393628
Offset: 0
G_1(9) = B_2(9)-1 = B_2(2^(2+1)+1)-1 = 3^(3+1) + 1-1 = 81;
G_2(9) = B_3(3^(3+1))-1 = 4^(4+1)-1 = 1023;
G_3(9) = B_4(3*4^4 + 3*4^3 + 3*4^2 + 3*4 + 3)-1 = 3*5^5 + 3*5^3 + 3*5^2 + 3*5 + 3-1 = 9842;
G_4(9) = B_5(3*5^5 + 3*5^3 + 3*5^2 + 3*5 + 2)-1 = 3*6^6 + 3*6^3 + 3*6^2 + 3*6 + 2-1 = 140743;
G_5(9) = B_6(3*6^6 + 3*6^3 + 3*6^2 + 3*6 + 1)-1 = 3*7^7 + 3*7^3 + 3*7^2 + 3*7 + 1-1 = 2471826;
G_6(9) = B_7(3*7^7 + 3*7^3 + 3*7^2 + 3*7)-1 = 3*8^8 + 3*8^3 + 3*8^2 + 3*8-1 = 50333399.
-
lista(nn) = {print1(a = 9, ", "); for (n=2, nn, pd = Pol(digits(a, n)); q = sum(k=0, poldegree(pd), if (c=polcoeff(pd, k), c*x^subst(Pol(digits(k, n)), x, n+1), 0)); a = subst(q, x, n+1) - 1; print1(a, ", "); ); }
A271557
a(n) = G_n(10), where G is the Goodstein function defined in A266201.
Original entry on oeis.org
10, 83, 1025, 15625, 279935, 4215754, 84073323, 1937434592, 50000555551, 1426559238830, 44580503598539, 1514375534972427, 55560034130686045, 2189469451908364943, 92233720368553350471, 4136201309431691363859, 196732040376482697880697, 9892098278301567958688175
Offset: 0
G_1(10) = B_2(10)-1 = B_2(2^(2+1)+2)-1 = 3^(3+1)+3-1 = 83;
G_2(10) = B_3(3^(3+1)+2)-1 = 4^(4+1)+2-1 = 1025;
G_3(10) = B_4(4^(4+1)+1)-1 = 5^(5+1)+1-1 = 15625;
G_4(10) = B_5(5*5^(5+1))-1 = 6^(6+1)-1= 279935;
G_5(10) = B_6(5*6^6+5*6^5+5*6^4+5*6^3+5*6^2+5*6+5)-1 = 5*7^7+5*7^5+5*7^4+5*7^3+5*7^2+5*7+5-1 = 4215754;
G_6(10) = B_7(5*7^7+5*7^5+5*7^4+5*7^3+5*7^2+5*7+4)-1 = 5*8^8+5*8^5+5*8^4+5*8^3+5*8^2+5*8+4-1 = 84073323;
G_7(10) = B_8(5*8^8+5*8^5+5*8^4+5*8^3+5*8^2+5*8+3)-1 = 5*9^9+5*9^5+5*9^4+5*9^3+5*9^2+5*9+3-1 = 1937434592;
G_8(10) = B_9(5*9^9+5*9^5+5*9^4+5*9^3+5*9^2+5*9+2)-1 = 5*10^10+5*10^5+5*10^4+5*10^3+5*10^2+5*10+2-1 = 50000555551.
Cf.
A056193: G_n(4),
A059933: G_n(16),
A211378: G_n(19),
A215409: G_n(3),
A222117: G_n(15),
A266204: G_n(5),
A266205: G_n(6),
A271554: G_n(7),
A271555: G_n(8),
A271556: G_n(9),
A266201: G_n(n).
-
lista(nn) = {print1(a = 10, ", "); for (n=2, nn, pd = Pol(digits(a, n)); q = sum(k=0, poldegree(pd), if (c=polcoeff(pd, k), c*x^subst(Pol(digits(k, n)), x, n+1), 0)); a = subst(q, x, n+1) - 1; print1(a, ", "); ); }
A222112
Initial step in Goodstein sequences: write n-1 in hereditary binary representation, then bump to base 3.
Original entry on oeis.org
0, 1, 3, 4, 27, 28, 30, 31, 81, 82, 84, 85, 108, 109, 111, 112, 7625597484987, 7625597484988, 7625597484990, 7625597484991, 7625597485014, 7625597485015, 7625597485017, 7625597485018, 7625597485068, 7625597485069, 7625597485071, 7625597485072, 7625597485095
Offset: 1
n = 19: 19 - 1 = 18 = 2^4 + 2^1 = 2^2^2 + 2^1
-> a(19) = 3^3^3 + 3^1 = 7625597484990;
n = 20: 20 - 1 = 19 = 2^4 + 2^1 + 2^0 = 2^2^2 + 2^1 + 2^0
-> a(20) = 3^3^3 + 3^1 + 3^0 = 7625597484991;
n = 21: 21 - 1 = 20 = 2^4 + 2^2 = 2^2^2 + 2^2
-> a(21) = 3^3^3 + 3^3 = 7625597485014.
- Helmut Schwichtenberg and Stanley S. Wainer, Proofs and Computations, Cambridge University Press, 2012; 4.4.1, page 148ff.
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- R. L. Goodstein, On the Restricted Ordinal Theorem, The Journal of Symbolic Logic, Vol. 9, No. 2, Jun., 1944.
- Wikipedia, Goodstein's Theorem
- Reinhard Zumkeller, Haskell programs for Goodstein sequences
-
-- See Link
-
A222112(n)=sum(i=1, #n=binary(n-1), if(n[i],3^if(#n-i<2, #n-i, A222112(#n-i+1)))) \\ See A266201 for more general code. - M. F. Hasler, Feb 13 2017, edited Feb 19 2017
A271558
a(n) = G_n(11), where G is the Goodstein function defined in A266201.
Original entry on oeis.org
11, 84, 1027, 15627, 279937, 5764801, 134217727, 2749609302, 70077777775, 1997331745490, 62412976762503, 2120126221988686, 77784048573561751, 3065257233947460930, 129127208517971179375, 5790681833207409243109, 275424856527080300658781, 13848937589622201728586799
Offset: 0
G_1(11) = B_2(11)-1 = B_2(2^(2+1)+2+1)-1 = 3^(3+1)+3+1-1 = 84;
G_2(11) = B_3(3^(3+1)+3)-1 = 4^(4+1)+4-1 = 1027;
G_3(11) = B_4(4^(4+1)+3)-1 = 5^(5+1)+3-1 = 15627;
G_4(11) = B_5(5^(5+1)+2)-1 = 6^(6+1)+2-1 = 279937;
G_5(11) = B_6(6^(6+1)+1)-1 = 7^(7+1)+1-1 = 5764801;
G_6(11) = B_7(7^(7+1))-1 = 8^(8+1)-1 = 134217727.
Cf.
A056193: G_n(4),
A059933: G_n(16),
A211378: G_n(19),
A215409: G_n(3),
A222117: G_n(15),
A266204: G_n(5),
A266205: G_n(6),
A271554: G_n(7),
A271555: G_n(8),
A271556: G_n(9),
A271557: G_n(10),
A266201: G_n(n).
-
lista(nn) = {print1(a = 11, ", "); for (n=2, nn, pd = Pol(digits(a, n)); q = sum(k=0, poldegree(pd), if (c=polcoeff(pd, k), c*x^subst(Pol(digits(k, n)), x, n+1), 0)); a = subst(q, x, n+1) - 1; print1(a, ", "); ); }
A271559
a(n) = G_n(12), where G is the Goodstein function defined in A266201.
Original entry on oeis.org
12, 107, 1065, 15685, 280019, 5764910, 134217867, 3486784574, 100000000211, 3138428376974, 106993205379371, 3937376385699637, 155568095557812625, 6568408355712891083, 295147905179352826375, 14063084452067724991593, 708235345355337676358285, 37589973457545958193356327
Offset: 0
G_1(12) = B_2(12)-1 = B_2(2^(2+1)+2^2)-1 = 3^(3+1)+3^3-1 = 107;
G_2(12) = B_3(3^(3+1)+2*3^2+2*3+2)-1 = 4^(4+1)+2*4^2+2*4+2-1 = 1065;
G_3(12) = B_4(4^(4+1)+2*4^2+2*4+1)-1 = 5^(5+1)+2*5^2+2*5+1-1 = 15685;
G_4(12) = B_5(5^(5+1)+2*5^2+2*5)-1 = 6^(6+1)+2*6^2+2*6-1 = 280019;
G_5(12) = B_6(6^(6+1)+2*6^2+6+5)-1 = 7^(7+1)+2*7^2+7+5-1 = 5764910;
G_6(12) = B_7(7^(7+1)+2*7^2+7+4)-1 = 8^(8+1)+2*8^2+8+4-1 = 134217867;
G_7(12) = B_8(8^(8+1)+2*8^2+8+3)-1 = 9^(9+1)+2*9^2+9+3-1 = 3486784574.
Cf.
A056193: G_n(4),
A059933: G_n(16),
A211378: G_n(19),
A215409: G_n(3),
A222117: G_n(15),
A266204: G_n(5),
A266205: G_n(6),
A271554: G_n(7),
A271555: G_n(8),
A271556: G_n(9),
A271557: G_n(10),
A271558: G_n(11),
A266201: G_n(n).
-
lista(nn) = {print1(a = 12, ", "); for (n=2, nn, pd = Pol(digits(a, n)); q = sum(k=0, poldegree(pd), if (c=polcoeff(pd, k), c*x^subst(Pol(digits(k, n)), x, n+1), 0)); a = subst(q, x, n+1) - 1; print1(a, ", "); ); }
Comments