cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 34 results. Next

A213144 Polylogarithm li(-n,-4/9) multiplied by (13^(n+1))/9.

Original entry on oeis.org

1, -4, -20, 188, 5260, -6244, -2601620, -32352772, 1819651660, 70205109596, -1222831819220, -150917074955332, -1035896603485940, 350980640716235036, 12868008338514067180, -796662150577236175492
Offset: 0

Views

Author

Stanislav Sykora, Jun 06 2012

Keywords

Comments

See the sequence A212846 which describes the general case of li(-n,-p/q). This sequence is obtained for p=4,q=9.

Examples

			polylog(-5,-4/9)*13^6/9 = -6244.
		

Crossrefs

Programs

  • Mathematica
    p = 4; q = 9; f[n_] := PolyLog[-n, -p/q] (p + q)^(n + 1)/q; f[0] = 1; Array[f, 20, 0] (* Robert G. Wilson v, Dec 25 2015 *)
  • PARI
    \\ in A212846; run limnpq(nmax, 4, 9)

Formula

See formula in A212846, setting p=4,q=9.

A213145 Polylogarithm li(-n,-5/6) multiplied by (11^(n+1))/6.

Original entry on oeis.org

1, -5, -5, 295, 1195, -68705, -604205, 33497095, 521891995, -27561957905, -685542701405, 33989796735895, 1270896506674795, -58096477696175105, -3155667333487086605, 129898710835267046695
Offset: 0

Views

Author

Stanislav Sykora, Jun 06 2012

Keywords

Comments

See the sequence A212846 which describes the general case of li(-n,-p/q). This sequence is obtained for p=5,q=6.

Examples

			polylog(-5,-5/6)*11^6/6 = -68705.
		

Crossrefs

Programs

  • Mathematica
    p = 5; q = 6; f[n_] := PolyLog[-n, -p/q] (p + q)^(n + 1)/q; f[0] = 1; Array[f, 20, 0] (* Robert G. Wilson v, Dec 25 2015 *)
  • PARI
    \\ in A212846; run limnpq(nmax, 5, 6)

Formula

See formula in A212846, setting p=5,q=6.

A213146 Polylogarithm li(-n,-5/7) multiplied by (12^(n+1))/7.

Original entry on oeis.org

1, -5, -10, 330, 2760, -82680, -1593360, 40988880, 1552095360, -31261956480, -2267818248960, 29423279911680, 4603691259048960, -17797429029473280, -12287671292043970560, -95184807512707307520
Offset: 0

Views

Author

Stanislav Sykora, Jun 06 2012

Keywords

Comments

See the sequence A212846 which describes the general case of li(-n,-p/q). This sequence is obtained for p=5,q=7.

Examples

			polylog(-5,-5/7)*12^6/7 = -82680.
		

Crossrefs

Programs

  • Mathematica
    p = 5; q = 7; f[n_] := PolyLog[-n, -p/q] (p + q)^(n + 1)/q; f[0] = 1; Array[f, 20, 0] (* Robert G. Wilson v, Dec 25 2015 *)
  • PARI
    \\ in A212846; run limnpq(nmax, 5, 7)

Formula

See formula in A212846, setting p=5,q=7.

A213147 Polylogarithm li(-n,-5/8) multiplied by (13^(n+1))/8.

Original entry on oeis.org

1, -5, -15, 355, 4665, -88805, -2984415, 37043155, 3157381065, -10240455605, -4883191732815, -46188388946045, 10124441425941465, 280075126224969595, -26112838782751585215, -1459429976295088887245
Offset: 0

Views

Author

Stanislav Sykora, Jun 06 2012

Keywords

Comments

See the sequence A212846 which describes the general case of li(-n,-p/q). This sequence is obtained for p=5,q=8.

Examples

			polylog(-5,-5/8)*13^6/8 = -88805.
		

Crossrefs

Programs

  • Mathematica
    p = 5; q = 8; f[n_] := PolyLog[-n, -p/q] (p + q)^(n + 1)/q; f[0] = 1; Array[f, 20, 0] (* Robert G. Wilson v, Dec 25 2015 *)
  • PARI
    \\ in A212846, run limnpq(nmax, 5, 8)

Formula

See formula in A212846, setting p=5,q=8.

A213148 Polylogarithm li(-n,-5/9) multiplied by (14^(n+1))/9.

Original entry on oeis.org

1, -5, -20, 370, 6880, -84080, -4764320, 13835920, 5296238080, 57709630720, -8215749893120, -267412364065280, 15638020342497280, 1127961849051627520, -29166891598121553920, -5249813654826672404480
Offset: 0

Views

Author

Stanislav Sykora, Jun 06 2012

Keywords

Comments

See the sequence A212846 which describes the general case of li(-n,-p/q). This sequence is obtained for p=5,q=9.

Examples

			polylog(-5,-5/9)*14^6/9 = -84080.
		

Crossrefs

Programs

  • Mathematica
    p = 5; q = 9; f[n_] := PolyLog[-n, -p/q] (p + q)^(n + 1)/q; f[0] = 1; Array[f, 20, 0] (* Robert G. Wilson v, Dec 25 2015 *)
  • PARI
    \\ in A212846; run limnpq(nmax, 5, 9)

Formula

See formula in A212846, setting p=5,q=9.

A213149 Polylogarithm li(-n,-6/7) multiplied by (13^(n+1))/7.

Original entry on oeis.org

1, -6, -6, 498, 2010, -163806, -1426326, 113319858, 1731433530, -133040247486, -3200805321846, 235719742497618, 8363215587567450, -584103976037953566, -29313609779751086166, 1917198413998763777778
Offset: 0

Views

Author

Stanislav Sykora, Jun 06 2012

Keywords

Comments

See the sequence A212846 which describes the general case of li(-n,-p/q). This sequence is obtained for p=6,q=7.

Examples

			polylog(-5,-6/7)*13^6/7 = -163806.
		

Crossrefs

Programs

  • Mathematica
    p = 6; q = 7; f[n_] := PolyLog[-n, -p/q] (p + q)^(n + 1)/q; f[0] = 1; Array[f, 20, 0] (* Robert G. Wilson v, Dec 25 2015 *)
  • PARI
    \\ in A212846; run limnpq(nmax, 6, 7)

Formula

See formula in A212846, setting p=6,q=7.

A213150 Polylogarithm li(-n,-7/8) multiplied by (15^(n+1))/8.

Original entry on oeis.org

1, -7, -7, 777, 3129, -342615, -2965095, 318612105, 4810567545, -504410403735, -11895756971175, 1209591806193225, 41613411780711225, -4074816146460117975, -195459943548067129575, 18284823353530418351625
Offset: 0

Views

Author

Stanislav Sykora, Jun 06 2012

Keywords

Comments

See the sequence A212846 which describes the general case of li(-n,-p/q). This sequence is obtained for p=7,q=8.

Examples

			polylog(-5,-7/8)*15^6/8 = -342615.
		

Crossrefs

Programs

  • Mathematica
    p = 7; q = 8; f[n_] := PolyLog[-n, -p/q] (p + q)^(n + 1)/q; f[0] = 1; Array[f, 20, 0] (* Robert G. Wilson v, Dec 25 2015 *)
  • PARI
    \\ in A212846; run limnpq(nmax, 7, 8)

Formula

See formula in A212846, setting p=7,q=8.

A213151 Polylogarithm li(-n,-7/9) multiplied by (16^(n+1))/9.

Original entry on oeis.org

1, -7, -14, 854, 7000, -405832, -7373744, 396878384, 13211201920, -640085041792, -35826474785024, 1495566369860864, 136414677606538240, -4577281372443415552, -691769416923579029504, 16372660554702059116544
Offset: 0

Views

Author

Stanislav Sykora, Jun 06 2012

Keywords

Comments

See the sequence A212846 which describes the general case of li(-n,-p/q). This sequence is obtained for p=7,q=9.

Examples

			polylog(-5,-7/9)*16^6/9 = -405832.
		

Crossrefs

Programs

  • Mathematica
    p = 7; q = 9; f[n_] := PolyLog[-n, -p/q] (p + q)^(n + 1)/q; f[0] = 1; Array[f, 20, 0] (* Robert G. Wilson v, Dec 25 2015 *)
  • PARI
    in A212846; run limnpq(nmax, 7, 9)

Formula

See formula in A212846, setting p=7,q=9.

A213152 Polylogarithm li(-n,-7/10) multiplied by (17^(n+1))/10.

Original entry on oeis.org

1, -7, -21, 917, 11571, -452347, -13308141, 435327557, 25765086291, -624624700987, -74611975175661, 990632591644997, 299140108182963411, 249897499717445573, -1569672873030414985581, -30079222140754781400763
Offset: 0

Views

Author

Stanislav Sykora, Jun 06 2012

Keywords

Comments

See the sequence A212846 which describes the general case of li(-n,-p/q). This sequence is obtained for p=7,q=10.

Examples

			polylog(-5,-7/10)*17^6/10 = -452347.
		

Crossrefs

Programs

  • Mathematica
    p = 7; q = 10; f[n_] := PolyLog[-n, -p/q] (p + q)^(n + 1)/q; f[0] = 1; Array[f, 20, 0] (* Robert G. Wilson v, Dec 25 2015 *)
  • PARI
    in A212846; run limnpq(nmax, 7, 10)

Formula

See formula in A212846, setting p=7,q=10.

A213153 Polylogarithm li(-n,-8/9) multiplied by (17^(n+1))/9.

Original entry on oeis.org

1, -8, -8, 1144, 4600, -650888, -5610248, 782393464, 11721120760, -1604217628808, -37345505230088, 4993399538404984, 168423884058659320, -21890458098275195528, -1020495088251266584328
Offset: 0

Views

Author

Stanislav Sykora, Jun 06 2012

Keywords

Comments

See the sequence A212846 which describes the general case of li(-n,-p/q). This sequence is obtained for p=8,q=9.

Examples

			polylog(-5,-8/9)*17^6/9 = -650888.
		

Crossrefs

Programs

  • Mathematica
    p = 8; q = 9; f[n_] := PolyLog[-n, -p/q] (p + q)^(n + 1)/q; f[0] = 1; Array[f, 20, 0] (* Robert G. Wilson v, Dec 25 2015 *)
  • PARI
    in A212846; run limnpq(nmax, 8, 9)

Formula

See formula in A212846, setting p=8,q=9.
Previous Showing 21-30 of 34 results. Next