A381715
Number of multisets that can be obtained by taking the sum of each block of a multiset partition of the prime indices of n into distinct constant blocks.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1
Offset: 1
The prime indices of 1728 are {1,1,1,1,1,1,2,2,2}, with multiset partitions into distinct constant blocks:
{{2,2,2},{1,1,1,1,1,1}}
{{1},{2,2,2},{1,1,1,1,1}}
{{2},{2,2},{1,1,1,1,1,1}}
{{1,1},{2,2,2},{1,1,1,1}}
{{1},{2},{2,2},{1,1,1,1,1}}
{{1},{1,1},{1,1,1},{2,2,2}}
{{2},{1,1},{2,2},{1,1,1,1}}
{{1},{2},{1,1},{2,2},{1,1,1}}
with sums:
{6,6}
{1,5,6}
{2,4,6}
{2,4,6}
{1,2,4,5}
{1,2,3,6}
{2,2,4,4}
{1,2,2,3,4}
of which 7 are distinct, so a(1728) = 7.
Positions of terms > 1 are
A046099.
For equal instead of distinct blocks we have
A362421.
For strict instead of constant blocks we have
A381441, before sums
A050326.
A003963 gives product of prime indices.
Cf.
A000720,
A001222,
A002846,
A005117,
A050342,
A213242,
A213385,
A293511,
A299202,
A300385,
A317142,
A381870.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[mset_]:=Union[Sort[Sort/@(#/.x_Integer:>mset[[x]])]&/@sps[Range[Length[mset]]]];
Table[Length[Union[Sort[Total/@#]&/@Select[mps[prix[n]],UnsameQ@@#&&And@@SameQ@@@#&]]],{n,100}]
A381452
Number of multisets that can be obtained by partitioning the prime indices of n into a set of multisets and taking their sums.
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 3, 2, 2, 1, 4, 1, 2, 2, 3, 1, 5, 1, 3, 2, 2, 2, 4, 1, 2, 2, 5, 1, 5, 1, 3, 3, 2, 1, 5, 1, 3, 2, 3, 1, 5, 2, 5, 2, 2, 1, 7, 1, 2, 3, 4, 2, 5, 1, 3, 2, 5, 1, 6, 1, 2, 3, 3, 2, 5, 1, 6, 2, 2, 1, 8, 2, 2, 2
Offset: 1
The prime indices of 24 are {1,1,1,2}, with 5 partitions into a set of multisets:
{{1,1,1,2}}
{{1},{1,1,2}}
{{2},{1,1,1}}
{{1,1},{1,2}}
{{1},{2},{1,1}}
with block-sums: {5}, {1,4}, {2,3}, {2,3}, {1,2,2}, of which 4 are distinct, so a(24) = 4.
For distinct block-sums instead of blocks we have
A381637, before sums
A321469.
Other multiset partitions of prime indices:
A003963 gives product of prime indices.
A122111 represents conjugation in terms of Heinz numbers.
A265947 counts refinement-ordered pairs of integer partitions.
Cf.
A000720,
A001222,
A001970,
A002846,
A066328,
A213385,
A213427,
A299200,
A299202,
A300385,
A317142.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[mset_]:=Union[Sort[Sort/@(#/.x_Integer:>mset[[x]])]&/@sps[Range[Length[mset]]]];
Table[Length[Union[Sort[Total/@#]&/@Select[mps[prix[n]],UnsameQ@@#&]]],{n,100}]
A381637
Number of multisets that can be obtained by taking the sum of each block of a multiset partition of the prime indices of n into blocks with distinct sums.
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 2, 1, 3, 1, 3, 2, 2, 1, 3, 1, 2, 2, 3, 1, 4, 1, 3, 2, 2, 2, 4, 1, 2, 2, 4, 1, 5, 1, 3, 3, 2, 1, 4, 1, 3, 2, 3, 1, 5, 2, 5, 2, 2, 1, 5, 1, 2, 2, 4, 2, 5, 1, 3, 2, 4, 1, 5, 1, 2, 3, 3, 2, 5, 1, 5, 2, 2, 1, 6, 2, 2, 2
Offset: 1
The prime indices of 84 are {1,1,2,4}, with 7 multiset partitions into blocks with distinct sums:
{{1,1,2,4}}
{{1},{1,2,4}}
{{2},{1,1,4}}
{{1,1},{2,4}}
{{1,2},{1,4}}
{{1},{2},{1,4}}
{{1},{4},{1,2}}
with block-sums: {8}, {1,7}, {2,6}, {2,6}, {3,5}, {1,2,5}, {1,3,4}, of which 6 are distinct, so a(84) = 6.
For distinct blocks instead of distinct block-sums we have
A381452.
For equal instead of distinct block-sums we have
A381872, before sums
A321455.
Other multiset partitions of prime indices:
A003963 gives product of prime indices.
A265947 counts refinement-ordered pairs of integer partitions.
Cf.
A000720,
A001222,
A001970,
A002846,
A045778,
A066328,
A213385,
A299200,
A299201,
A299202,
A300385,
A317142.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[mset_]:=Union[Sort[Sort/@(#/.x_Integer:>mset[[x]])]&/@sps[Range[Length[mset]]]];
Table[Length[Union[Sort[Total/@#]&/@Select[mps[prix[n]],UnsameQ@@Total/@#&]]],{n,100}]
A213597
Triangle T(n,k), n>=1, 0<=k<=A000041(n), read by rows: row n gives the coefficients of the chromatic polynomial of the ranked poset L(n) of partitions of n, highest powers first.
Original entry on oeis.org
1, 0, 1, -1, 0, 1, -2, 1, 0, 1, -5, 10, -9, 3, 0, 1, -9, 36, -79, 98, -64, 17, 0, 1, -17, 136, -666, 2192, -5032, 8111, -9013, 6569, -2818, 537, 0, 1, -28, 378, -3242, 19648, -88676, 306308, -819933, 1703404, -2723374, 3285552, -2887734, 1739326, -639065, 107435, 0
Offset: 1
L(5): (32)---(221)
/ \ / \
/ X \
/ / \ \
(5)---(41)---(311)---(2111)---(11111)
Chromatic polynomial: q^7-9*q^6+36*q^5-79*q^4+98*q^3-64*q^2+17*q.
Triangle T(n,k) begins:
1, 0;
1, -1, 0;
1, -2, 1, 0;
1, -5, 10, -9, 3, 0;
1, -9, 36, -79, 98, -64, 17, 0;
1, -17, 136, -666, 2192, -5032, 8111, -9013, 6569, -2818, 537, 0;
Row sums (for n>1) and last elements of rows give:
A000004.
A381807
Number of multisets that can be obtained by choosing a constant partition of each m = 0..n and taking the multiset union.
Original entry on oeis.org
1, 1, 2, 4, 12, 24, 92, 184, 704, 2016, 7600, 15200, 80664, 161328, 601696, 2198824, 9868544, 19737088, 102010480, 204020960
Offset: 0
The a(1) = 1 through a(4) = 12 multisets:
{1} {1,2} {1,2,3} {1,2,3,4}
{1,1,1} {1,1,1,3} {1,1,1,3,4}
{1,1,1,1,2} {1,2,2,2,3}
{1,1,1,1,1,1} {1,1,1,1,2,4}
{1,1,1,2,2,3}
{1,1,1,1,1,1,4}
{1,1,1,1,1,2,3}
{1,1,1,1,2,2,2}
{1,1,1,1,1,1,1,3}
{1,1,1,1,1,1,2,2}
{1,1,1,1,1,1,1,1,2}
{1,1,1,1,1,1,1,1,1,1}
The number of possible choices was
A066843.
A000688 counts multiset partitions into constant blocks.
A050361 and
A381715 count multiset partitions into constant multisets.
A066723 counts partitions coarser than {1..n}, primorial case of
A317141.
A265947 counts refinement-ordered pairs of integer partitions.
A321470 counts partitions finer than {1..n}, primorial case of
A300383.
Cf.
A001970,
A018818,
A213385,
A299200,
A321467,
A321468,
A321471,
A321514,
A355731,
A381453,
A381455.
-
Table[Length[Union[Sort/@Join@@@Tuples[Select[IntegerPartitions[#],SameQ@@#&]&/@Range[n]]]],{n,0,10}]
A381808
Number of multisets that can be obtained by choosing a strict integer partition of m for each m = 0..n and taking the multiset union.
Original entry on oeis.org
1, 1, 1, 2, 4, 12, 38, 145, 586, 2619, 12096, 58370, 285244, 1436815, 7281062, 37489525, 193417612
Offset: 0
The a(1) = 1 through a(5) = 12 multisets:
{1} {1,2} {1,2,3} {1,2,3,4} {1,2,3,4,5}
{1,1,2,2} {1,1,2,2,4} {1,1,2,2,4,5}
{1,1,2,3,3} {1,1,2,3,3,5}
{1,1,1,2,2,3} {1,1,2,3,4,4}
{1,2,2,3,3,4}
{1,1,1,2,2,3,5}
{1,1,1,2,2,4,4}
{1,1,1,2,3,3,4}
{1,1,2,2,2,3,4}
{1,1,2,2,3,3,3}
{1,1,1,1,2,2,3,4}
{1,1,1,2,2,2,3,3}
A066723 counts partitions coarser than {1..n}, primorial case of
A317141.
A265947 counts refinement-ordered pairs of integer partitions.
A321470 counts partitions finer than {1..n}, primorial case of
A300383.
Cf.
A001970,
A018818,
A213385,
A299200,
A321467,
A321468,
A321471,
A321514,
A355731,
A381453,
A381455.
-
Table[Length[Union[Sort/@Join@@@Tuples[Select[IntegerPartitions[#],UnsameQ@@#&]&/@Range[n]]]],{n,0,10}]
Comments