cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 21 results. Next

A343359 Decimal expansion of 1/zeta(6).

Original entry on oeis.org

9, 8, 2, 9, 5, 2, 5, 9, 2, 2, 6, 4, 5, 8, 0, 4, 1, 9, 8, 0, 4, 8, 9, 6, 5, 6, 4, 9, 9, 3, 9, 2, 4, 1, 3, 2, 9, 5, 1, 2, 2, 1, 5, 1, 5, 9, 8, 6, 6, 0, 6, 8, 3, 0, 8, 4, 3, 7, 4, 0, 4, 0, 4, 9, 3, 5, 5, 0, 2, 5, 4, 1, 3, 4, 4, 6, 8, 7, 4, 2, 4, 8, 0, 8, 9, 8, 9, 5, 5, 4
Offset: 0

Views

Author

Karl-Heinz Hofmann, Apr 12 2021

Keywords

Comments

Decimal expansion of 1/zeta(6), the inverse of A013664.
1/zeta(6) has a known closed-form formula (945/Pi^6) like 1/zeta(2) = 6/Pi^2 and 1/zeta(4) = 90/Pi^4.
1/zeta(6) is the probability that 6 randomly selected numbers will be coprime. - A.H.M. Smeets, Apr 13 2021

Examples

			0.982952592264580419804896564993924132951221515986...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[1/Zeta[6], 10, 100][[1]] (* Amiram Eldar, Apr 12 2021 *)
  • PARI
    1/zeta(6) \\ A.H.M. Smeets, Apr 13 2021

Formula

Equals 1/A013664 = 945/Pi^6.
From Amiram Eldar, Jun 01 2023: (Start)
Equals Sum_{k>=1} mu(k)/k^6, where mu is the Möbius function (A008683).
Equals Product_{p prime} (1 - 1/p^6). (End)

A375072 Biquadratefree numbers (A046100) that are not cubefree (A004709).

Original entry on oeis.org

8, 24, 27, 40, 54, 56, 72, 88, 104, 108, 120, 125, 135, 136, 152, 168, 184, 189, 200, 216, 232, 248, 250, 264, 270, 280, 296, 297, 312, 328, 343, 344, 351, 360, 375, 376, 378, 392, 408, 424, 440, 456, 459, 472, 488, 500, 504, 513, 520, 536, 540, 552, 568, 584, 594, 600
Offset: 1

Views

Author

Amiram Eldar, Jul 29 2024

Keywords

Comments

Subsequence of A176297 and first differs from it at n = 41: A176297(41) = 432 = 2^4 * 3^3 is not a term of this sequence.
Numbers whose prime factorization has least one exponent that equals 3 and no higher exponent.
Numbers k such that A051903(k) = 3.
The asymptotic density of this sequence is 1/zeta(4) - 1/zeta(3) = A215267 - A088453 = 0.0920310303408826983406... .

Crossrefs

Intersection of A046100 and A176297.

Programs

  • Mathematica
    Select[Range[600], Max[FactorInteger[#][[;; , 2]]] == 3 &]
  • PARI
    is(k) = k > 1 && vecmax(factor(k)[,2]) == 3;
    
  • Python
    from sympy import mobius, integer_nthroot
    def A375072(n):
        def f(x): return n+x-sum(mobius(k)*(x//k**4-x//k**3) for k in range(1, integer_nthroot(x,4)[0]+1))+sum(mobius(k)*(x//k**3) for k in range(integer_nthroot(x,4)[0]+1, integer_nthroot(x,3)[0]+1))
        m, k = n, f(n)
        while m != k:
            m, k = k, f(k)
        return m # Chai Wah Wu, Aug 05 2024

A375245 Number of biquadratefree numbers <= n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 75, 75, 76, 77, 78, 79
Offset: 1

Views

Author

Chai Wah Wu, Aug 07 2024

Keywords

Comments

First differs from A309083 at n = 81: a(81) = 75, A309083(n) = 77. - Andrew Howroyd, Aug 10 2024

Crossrefs

Programs

  • Mathematica
    Accumulate[Table[Boole[Max[FactorInteger[n][[;; , 2]]] < 4], {n, 1, 100}]] (* Amiram Eldar, Aug 10 2024 *)
  • PARI
    a(n) = sum(d=1, sqrtnint(n,4), moebius(d)*(n\d^4)) \\ Andrew Howroyd, Aug 10 2024
  • Python
    from sympy import mobius, integer_nthroot
    def A375245(n): return int(sum(mobius(k)*(n//k**4) for k in range(1, integer_nthroot(n,4)[0]+1)))
    

Formula

a(n) = Sum_{d>=1} mu(d)*floor(n/d^4), where mu is the Moebius function A008683.
n/a(n) converges to zeta(4).
a(n) = Sum_{k = 1..n} A307430(k).

Extensions

a(68) onwards from Andrew Howroyd, Aug 10 2024

A342683 Decimal expansion of 1/zeta(8).

Original entry on oeis.org

9, 9, 5, 9, 3, 9, 2, 0, 1, 1, 2, 5, 5, 1, 5, 1, 4, 6, 8, 3, 4, 8, 3, 6, 4, 7, 2, 8, 0, 5, 5, 4, 5, 3, 2, 4, 0, 0, 5, 0, 2, 2, 7, 7, 8, 4, 5, 8, 9, 3, 0, 3, 6, 2, 7, 8, 5, 3, 5, 4, 2, 4, 5, 5, 5, 4, 1, 3, 8, 5, 7, 4, 6, 2, 0, 9, 4, 0, 4, 5, 4, 2, 6, 5, 1, 5, 9
Offset: 0

Views

Author

Karl-Heinz Hofmann, May 18 2021

Keywords

Comments

1/zeta(8) is the probability that 8 randomly selected numbers will be coprime.

Examples

			0.9959392011255151468348364728055453240050227784589...
		

Crossrefs

Programs

  • Maple
    evalf(9450/Pi^8,100) ; # R. J. Mathar, Jun 04 2021
  • Mathematica
    RealDigits[1/Zeta[8], 10, 100][[1]] (* Amiram Eldar, May 18 2021 *)
  • PARI
    1/zeta(8)

Formula

Equals 1/A013666 = 9450/Pi^8.
From Amiram Eldar, Jun 01 2023: (Start)
Equals Sum_{k>=1} mu(k)/k^8, where mu is the Möbius function (A008683).
Equals Product_{p prime} (1 - 1/p^8). (End)

A375074 Numbers whose prime factorization exponents include at least one 2, at least one 3 and no higher exponents.

Original entry on oeis.org

72, 108, 200, 360, 392, 500, 504, 540, 600, 675, 756, 792, 936, 968, 1125, 1176, 1188, 1224, 1323, 1350, 1352, 1368, 1372, 1400, 1404, 1500, 1656, 1800, 1836, 1960, 2052, 2088, 2200, 2232, 2250, 2312, 2484, 2520, 2600, 2646, 2664, 2700, 2888, 2904, 2952, 3087
Offset: 1

Views

Author

Amiram Eldar, Jul 29 2024

Keywords

Comments

Numbers whose powerful part (A057521) is a term of A375073.
The asymptotic density of this sequence is 1/zeta(4) - 1/zeta(3) + 1/zeta(2) - zeta(6)/(zeta(2) * zeta(3)) * c = A215267 - A088453 + A059956 - A068468 * c = 0.0156712080080470088619..., where c = Product_{p prime} (1 + 2/p^3 - 1/p^4 + 1/p^5).

Crossrefs

Equals A046100 \ (A004709 UNION A336591).
Disjoint union of A375073 and A375075.

Programs

  • Mathematica
    Select[Range[3000], Union[Select[FactorInteger[#][[;; , 2]], # > 1 &]] == {2, 3} &]
  • PARI
    is(k) = Set(select(x -> x > 1, factor(k)[,2])) == [2, 3];

Formula

A051903(a(n)) = 3.

A375075 Numbers whose prime factorization exponents include at least one 1, at least one 2, at least one 3 and no other exponents.

Original entry on oeis.org

360, 504, 540, 600, 756, 792, 936, 1176, 1188, 1224, 1350, 1368, 1400, 1404, 1500, 1656, 1836, 1960, 2052, 2088, 2200, 2232, 2250, 2484, 2520, 2600, 2646, 2664, 2904, 2952, 3096, 3132, 3348, 3384, 3400, 3500, 3780, 3800, 3816, 3960, 3996, 4056, 4116, 4200, 4248, 4312, 4392, 4428
Offset: 1

Views

Author

Amiram Eldar, Jul 29 2024

Keywords

Comments

First differs from its subsequence A163569 at n = 25: a(25) = 2520 = 2^3 * 3^2 * 5 * 7 is not a term of A163569.
Numbers k such that the set of distinct prime factorization exponents of k (row k of A136568) is {1, 2, 3}.
The asymptotic densities of this sequence and A375074 are equal (0.0156712..., see A375074 for a formula), since the terms in A375074 that are not in this sequence (A375073) have a density 0.

Crossrefs

Intersection of A375072 and A317090.
Equals A375074 \ A375073.
Subsequence of A046100 and A176297.
A163569 is a subsequence.

Programs

  • Mathematica
    Select[Range[4500], Union[FactorInteger[#][[;; , 2]]] == {1, 2, 3} &]
  • PARI
    is(k) = Set(factor(k)[,2]) == [1, 2, 3];

A375246 Number of biquadratefree numbers <= 10^n.

Original entry on oeis.org

1, 10, 93, 925, 9240, 92395, 923939, 9239385, 92393839, 923938406, 9239384029, 92393840300, 923938402926, 9239384029211, 92393840292169, 923938402921591, 9239384029215891, 92393840292159004, 923938402921590127, 9239384029215901651, 92393840292159016603
Offset: 0

Views

Author

Chai Wah Wu, Aug 07 2024

Keywords

Comments

Digits of terms converge to digits of 1/zeta(4) = 90/Pi^4 (A215267).

Crossrefs

Programs

  • Python
    from sympy import mobius, integer_nthroot
    def A375246(n): return int(sum(mobius(k)*(10**n//k**4) for k in range(1, integer_nthroot(10**n,4)[0]+1)))

Formula

a(n) = A375245(10^n).

A382967 Biquadratefree numbers (A046100) that are not squarefree (A005117).

Original entry on oeis.org

4, 8, 9, 12, 18, 20, 24, 25, 27, 28, 36, 40, 44, 45, 49, 50, 52, 54, 56, 60, 63, 68, 72, 75, 76, 84, 88, 90, 92, 98, 99, 100, 104, 108, 116, 117, 120, 121, 124, 125, 126, 132, 135, 136, 140, 147, 148, 150, 152, 153, 156, 164, 168, 169, 171, 172, 175, 180, 184
Offset: 1

Views

Author

Amiram Eldar, Apr 10 2025

Keywords

Comments

Subsequence of A252849 and first differs from it at n = 22: A252849(22) = 64 = 2^6 is not a term of this sequence.
Subsequence of A375229 and differs from it by not having the terms 1, 256, 512, 768, 1024, ... .
Numbers whose prime factorization has least one exponent that equals 2 or 3 and no higher exponent.
Numbers k such that 2 <= A051903(k) <= 3.
The asymptotic density of this sequence is 1/zeta(4) - 1/zeta(2) = A215267 - A059956 = 0.3160113... .

Crossrefs

Disjoint union of A067259 and A375072.
Intersection of A046100 and A013929.
Subsequence of A252849 and A375229.

Programs

  • Mathematica
    Select[Range[200], 2 <= Max[FactorInteger[#][[;; , 2]]] <= 3 &]
  • PARI
    isok(k) = if(k == 1, 0, my(emax = vecmax(factor(k)[, 2])); emax > 1 & emax < 4);
    
  • Python
    from math import isqrt
    from sympy import mobius, integer_nthroot
    def A382967(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return int(n+x+sum(mobius(k)*(x//k**2-x//k**4) for k in range(1, integer_nthroot(x,4)[0]+1))+sum(mobius(k)*(x//k**2) for k in range(integer_nthroot(x,4)[0]+1,isqrt(x)+1)))
        return bisection(f,n,n) # Chai Wah Wu, Apr 11 2025

Formula

Sum_{k=1..n} a(k) ~ Pi^4 * n^2 / (12*(15 - Pi^2)). - Vaclav Kotesovec, Apr 11 2025

A341901 Decimal expansion of 1/zeta(9).

Original entry on oeis.org

9, 9, 7, 9, 9, 5, 6, 3, 2, 7, 3, 0, 7, 6, 2, 1, 5, 6, 8, 6, 4, 6, 7, 6, 1, 3, 2, 1, 0, 5, 0, 9, 9, 9, 9, 6, 3, 2, 0, 9, 4, 1, 8, 4, 8, 0, 5, 1, 8, 2, 1, 1, 9, 1, 2, 3, 7, 3, 6, 7, 4, 5, 1, 3, 3, 7, 5, 2, 3, 0, 1, 0, 5, 1, 9, 4, 1, 1, 4, 1, 8, 2, 4, 3, 9, 1, 7
Offset: 0

Views

Author

Karl-Heinz Hofmann, Jun 04 2021

Keywords

Comments

1/zeta(9) is the probability that 9 randomly selected numbers will be coprime.

Examples

			0.997995632730762156864676132105099996320941848...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[1/Zeta[9], 10, 100][[1]]
  • PARI
    1/zeta(9)

Formula

Equals 1/A013667.
From Amiram Eldar, Jun 01 2023: (Start)
Equals Sum_{k>=1} mu(k)/k^9, where mu is the Möbius function (A008683).
Equals Product_{p prime} (1 - 1/p^9). (End)

A369763 Decimal expansion of the asymptotic mean of the ratio A000688(k)/A038538(k).

Original entry on oeis.org

9, 8, 7, 7, 1, 4, 8, 4, 0, 0, 4, 4, 9, 3, 7, 6, 3, 7, 7, 4, 0, 2, 3, 0, 6, 8, 6, 7, 0, 6, 3, 9, 3, 4, 9, 3, 5, 1, 9, 0, 1, 0, 7, 5, 6, 7, 0, 3, 9, 5, 6, 2, 7, 1, 4, 4, 9, 9, 3, 6, 6, 1, 2, 5, 1, 9, 0, 8, 1, 8, 5, 0, 7, 8, 1, 8, 2, 9, 8, 6, 5, 2, 6, 6, 0, 0, 7, 6, 4, 7, 5, 2, 3, 9, 4, 3, 1, 0, 4, 3, 6, 5, 9, 3, 6
Offset: 0

Views

Author

Amiram Eldar, Jan 31 2024

Keywords

Comments

The asymptotic mean of the ratio between the number of non-isomorphic abelian groups and the number of non-isomorphic semisimple rings of the same order.
The constant A in Kühleitner's paper (1995).
The ratio is 1 for all biquadratefree numbers (whose asymptotic density is A215267 = 0.923..., see A046100), and smaller than 1 otherwise.

Examples

			0.98771484004493763774023068670639349351901075670395...
		

Crossrefs

Programs

  • PARI
    default(realprecision, 120); my(N=512, x='x+O('x^N), v); v = Vec(1/prod(k=1, sqrtint(N)+1, prod(j=1, 1+N\k^2, 1-x^(j*k^2)))); prodeulerrat((1-1/p)*vecsum(vector(N, i, numbpart(i-1)/(v[i]*p^(i-1))))) \\ after Vaclav Kotesovec at A004101

Formula

Equals Product_{p prime} (1 - 1/p)*(1 + Sum_{k>=1} A000041(k)/(A004101(k)*p^k)).
Previous Showing 11-20 of 21 results. Next