cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 47 results. Next

A383710 Number of integer partitions of n such that it is not possible to choose a family of pairwise disjoint strict integer partitions, one of each part.

Original entry on oeis.org

0, 0, 1, 1, 3, 4, 6, 10, 15, 22, 29, 42, 59, 79, 108, 140, 190, 247, 324, 417, 541
Offset: 0

Views

Author

Gus Wiseman, May 07 2025

Keywords

Comments

Also the number of integer partitions of n whose normal multiset (in which i appears y_i times) is not a Look-and-Say partition.

Examples

			For y = (3,3) we can choose disjoint strict partitions ((2,1),(3)), so (3,3) is not counted under a(6).
The a(2) = 1 through a(8) = 15 partitions:
  (11)  (111)  (22)    (221)    (222)     (322)      (332)
               (211)   (311)    (411)     (331)      (422)
               (1111)  (2111)   (2211)    (511)      (611)
                       (11111)  (3111)    (2221)     (2222)
                                (21111)   (3211)     (3221)
                                (111111)  (4111)     (3311)
                                          (22111)    (4211)
                                          (31111)    (5111)
                                          (211111)   (22211)
                                          (1111111)  (32111)
                                                     (41111)
                                                     (221111)
                                                     (311111)
                                                     (2111111)
                                                     (11111111)
		

Crossrefs

These partitions have Heinz numbers A382912.
The number of such families for each Heinz number is A383706.
The complement is counted by A383708, ranks A382913.
Without ones we have A383711, complement A383533.
A048767 is the Look-and-Say transform, fixed points A048768 (counted by A217605).
A098859 counts partitions with distinct multiplicities, compositions A242882.
A239455 counts Look-and-Say or section-sum partitions, ranks A351294 or A381432.
A351293 counts non-Look-and-Say or non-section-sum partitions, ranks A351295 or A381433.

Programs

  • Mathematica
    pof[y_]:=Select[Join@@@Tuples[IntegerPartitions/@y], UnsameQ@@#&];
    Table[Length[Select[IntegerPartitions[n], pof[#]=={}&]], {n,0,15}]

A384321 Numbers whose distinct prime indices are not maximally refined.

Original entry on oeis.org

5, 7, 11, 13, 17, 19, 21, 22, 23, 25, 26, 29, 31, 33, 34, 35, 37, 38, 39, 41, 43, 46, 47, 49, 51, 53, 55, 57, 58, 59, 61, 62, 65, 67, 69, 71, 73, 74, 77, 79, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 101, 102, 103, 106, 107, 109, 111, 113, 114, 115, 118, 119
Offset: 1

Views

Author

Gus Wiseman, Jun 01 2025

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
Given a partition, the following are equivalent:
1) The distinct parts are maximally refined.
2) Every strict partition of a part contains a part. In other words, if y is the set of parts and z is any strict partition of any element of y, then z must contain at least one element from y.
3) No part is a sum of distinct non-parts.

Examples

			The prime indices of 25 are {3,3}, which has refinements: ((3),(1,2)) and ((1,2),(3)), so 25 is in the sequence.
The prime indices of 102 are {1,2,7}, which has refinement ((1),(2),(3,4)), so 102 is in the sequence.
The terms together with their prime indices begin:
     5: {3}      39: {2,6}      73: {21}
     7: {4}      41: {13}       74: {1,12}
    11: {5}      43: {14}       77: {4,5}
    13: {6}      46: {1,9}      79: {22}
    17: {7}      47: {15}       82: {1,13}
    19: {8}      49: {4,4}      83: {23}
    21: {2,4}    51: {2,7}      85: {3,7}
    22: {1,5}    53: {16}       86: {1,14}
    23: {9}      55: {3,5}      87: {2,10}
    25: {3,3}    57: {2,8}      89: {24}
    26: {1,6}    58: {1,10}     91: {4,6}
    29: {10}     59: {17}       93: {2,11}
    31: {11}     61: {18}       94: {1,15}
    33: {2,5}    62: {1,11}     95: {3,8}
    34: {1,7}    65: {3,6}      97: {25}
    35: {3,4}    67: {19}      101: {26}
    37: {12}     69: {2,9}     102: {1,2,7}
    38: {1,8}    71: {20}      103: {27}
		

Crossrefs

These appear to be positions of terms > 1 in A383706, non-disjoint A357982, non-strict A299200.
The strict complement is A383707, counted by A179009.
Partitions of this type appear to be counted by A384317.
The complement is A384320.
The strict (squarefree) case appears to be A384322, counted by A384318.
A048767 is the Look-and-Say transform, fixed points A048768, counted by A217605.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.
A239455 counts Look-and-Say partitions, ranks A351294 or A381432.
A279790 and A279375 count ways to choose disjoint strict partitions of prime indices.
A351293 counts non-Look-and-Say partitions, ranks A351295 or A381433.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    nonsets[y_]:=If[Length[y]==0,{},Rest[Subsets[Complement[Range[Max@@y],y]]]];
    Select[Range[30],With[{y=Union[prix[#]]},UnsameQ@@y&&Intersection[y,Total/@nonsets[y]]!={}]&]

A383533 Number of integer partitions of n with no ones such that it is possible to choose a family of pairwise disjoint strict integer partitions, one of each part.

Original entry on oeis.org

1, 0, 1, 1, 1, 2, 3, 3, 4, 5, 8, 8, 11, 13, 17, 22, 25, 30, 37, 44, 53, 69, 77, 93, 111, 130, 153, 181, 220, 249, 295
Offset: 0

Views

Author

Gus Wiseman, May 07 2025

Keywords

Comments

The Heinz numbers of these partitions are the odd terms of A382913.
Also the number of integer partitions y of n with no ones such that the normal multiset (in which i appears y_i times) is a Look-and-Say partition.

Examples

			For y = (3,3) we can choose disjoint strict partitions ((2,1),(3)), so (3,3) is counted under a(6).
The a(2) = 1 through a(10) = 8 partitions:
  (2)  (3)  (4)  (5)    (6)    (7)    (8)    (9)      (10)
                 (3,2)  (3,3)  (4,3)  (4,4)  (5,4)    (5,5)
                        (4,2)  (5,2)  (5,3)  (6,3)    (6,4)
                                      (6,2)  (7,2)    (7,3)
                                             (4,3,2)  (8,2)
                                                      (4,3,3)
                                                      (4,4,2)
                                                      (5,3,2)
		

Crossrefs

The number of such families is A383706.
Allowing ones gives A383708 (ranks A382913), complement A383710 (ranks A382912).
The complement is counted by A383711.
A048767 is the Look-and-Say transform, fixed points A048768 (counted by A217605).
A098859 counts partitions with distinct multiplicities, compositions A242882.
A239455 counts Look-and-Say or section-sum partitions, ranks A351294 or A381432.
A351293 counts non-Look-and-Say or non-section-sum partitions, ranks A351295 or A381433.

Programs

  • Mathematica
    pof[y_]:=Select[Join@@@Tuples[IntegerPartitions/@y], UnsameQ@@#&];
    Table[Length[Select[IntegerPartitions[n], FreeQ[#,1]&&!pof[#]=={}&]],{n,0,15}]

A383711 Number of integer partitions of n with no ones such that it is not possible to choose a family of pairwise disjoint strict integer partitions, one of each part.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 1, 1, 3, 3, 4, 6, 10, 11, 17, 19, 30, 36, 51, 61, 84, 96, 133, 160, 209, 253, 325, 393, 488, 598, 744
Offset: 0

Views

Author

Gus Wiseman, May 07 2025

Keywords

Comments

The Heinz numbers of these partitions are the odd terms of A382912.
Also the number of integer partitions of n with no ones whose normal multiset (in which i appears y_i times) is not a Look-and-Say partition.

Examples

			For y = (3,3) we can choose disjoint strict partitions ((2,1),(3)), so (3,3) is not counted under a(6).
The a(4) = 1 through a(12) = 10 partitions:
  (22)  .  (222)  (322)  (332)   (333)   (622)    (443)    (444)
                         (422)   (522)   (3322)   (722)    (822)
                         (2222)  (3222)  (4222)   (3332)   (3333)
                                         (22222)  (4322)   (4332)
                                                  (5222)   (4422)
                                                  (32222)  (5322)
                                                           (6222)
                                                           (33222)
                                                           (42222)
                                                           (222222)
		

Crossrefs

The complement without ones is counted by A383533.
The number of these families is A383706.
Allowing ones gives A383710 (ranks A382912), complement A383708 (ranks A382913).
A048767 is the Look-and-Say transform, fixed points A048768 (counted by A217605).
A098859 counts partitions with distinct multiplicities, compositions A242882.
A239455 counts Look-and-Say or section-sum partitions, ranks A351294 or A381432.
A351293 counts non-Look-and-Say or non-section-sum partitions, ranks A351295 or A381433.

Programs

  • Mathematica
    pof[y_]:=Select[Join@@@Tuples[IntegerPartitions/@y],UnsameQ@@#&];
    Table[Length[Select[IntegerPartitions[n],FreeQ[#,1]&&pof[#]=={}&]],{n,0,15}]

A384322 Heinz numbers of strict integer partitions with more than one possible way to choose disjoint strict partitions of each part, i.e., strict partitions that can be properly refined.

Original entry on oeis.org

5, 7, 11, 13, 17, 19, 21, 22, 23, 26, 29, 31, 33, 34, 35, 37, 38, 39, 41, 43, 46, 47, 51, 53, 55, 57, 58, 59, 61, 62, 65, 67, 69, 71, 73, 74, 77, 79, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 101, 102, 103, 106, 107, 109, 111, 113, 114, 115, 118, 119, 122
Offset: 1

Views

Author

Gus Wiseman, Jun 01 2025

Keywords

Examples

			The strict partition (7,2,1) with Heinz number 102 can be properly refined into (4,3,2,1), so 102 is in the sequence.
The terms together with their prime indices begin:
     5: {3}      46: {1,9}      85: {3,7}
     7: {4}      47: {15}       86: {1,14}
    11: {5}      51: {2,7}      87: {2,10}
    13: {6}      53: {16}       89: {24}
    17: {7}      55: {3,5}      91: {4,6}
    19: {8}      57: {2,8}      93: {2,11}
    21: {2,4}    58: {1,10}     94: {1,15}
    22: {1,5}    59: {17}       95: {3,8}
    23: {9}      61: {18}       97: {25}
    26: {1,6}    62: {1,11}    101: {26}
    29: {10}     65: {3,6}     102: {1,2,7}
    31: {11}     67: {19}      103: {27}
    33: {2,5}    69: {2,9}     106: {1,16}
    34: {1,7}    71: {20}      107: {28}
    35: {3,4}    73: {21}      109: {29}
    37: {12}     74: {1,12}    111: {2,12}
    38: {1,8}    77: {4,5}     113: {30}
    39: {2,6}    79: {22}      114: {1,2,8}
    41: {13}     82: {1,13}    115: {3,9}
    43: {14}     83: {23}      118: {1,17}
		

Crossrefs

The non-strict version for no choices appears to be A382912, count A383710, odd A383711.
The non-strict version for > 0 choice appears to be A382913, count A383708, odd A383533.
These are the squarefree positions of terms > 1 in A383706, see A357982, A299200.
The case of a unique choice is A383707, counted by A179009.
Partitions of this type are counted by A384318.
This is the strict/squarefree case of A384321, counted by A384317.
The case of a unique proper choice is A384390, counted by A384319, non-strict A384323.
A048767 is the Look-and-Say transform, fixed points A048768, counted by A217605.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.
A239455 counts Look-and-Say partitions, ranks A351294 or A381432.
A279790 and A279375 count ways to choose disjoint strict partitions of prime indices.
A351293 counts non-Look-and-Say partitions, ranks A351295 or A381433.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    pof[y_]:=Select[Join@@@Tuples[IntegerPartitions/@y],UnsameQ@@#&];
    Select[Range[100],UnsameQ@@prix[#]&&Length[pof[prix[#]]]>1&]

A381440 Irregular triangle read by rows where row k is the Look-and-Say partition of the prime indices of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Feb 28 2025

Keywords

Comments

Row lengths are A066328.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The Look-and-Say partition of a multiset or partition y is obtained by interchanging parts with multiplicities. For example, starting with (3,2,2,1,1) we get (2,2,2,1,1,1), the multiset union of ((1,1,1),(2,2),(2)).
The conjugate of a Look-and-Say partition is a section-sum partition; see A381431, union A381432, count A239455.

Examples

			The prime indices of 24 are (2,1,1,1), with Look-and-Say partition (3,1,1), so row 24 is (3,1,1).
The prime indices of 36 are (2,2,1,1), with Look-and-Say partition (2,2,2), so row 36 is (2,2,2).
Triangle begins:
   1: (empty)
   2: 1
   3: 1 1
   4: 2
   5: 1 1 1
   6: 1 1 1
   7: 1 1 1 1
   8: 3
   9: 2 2
  10: 1 1 1 1
  11: 1 1 1 1 1
  12: 2 1 1
  13: 1 1 1 1 1 1
  14: 1 1 1 1 1
  15: 1 1 1 1 1
  16: 4
  17: 1 1 1 1 1 1 1
  18: 2 2 1
  19: 1 1 1 1 1 1 1 1
		

Crossrefs

Heinz numbers are A048767 (union A351294, complement A351295, fixed A048768, A217605).
First part in each row is A051903, conjugate A066328.
Last part in each row is A051904, conjugate A381437 (counted by A381438).
Row sums are A056239.
Row lengths are A066328.
Partitions of this type are counted by A239455, complement A351293.
The conjugate is A381436, Heinz numbers A381431 (union A381432, complement A381433).
Rows appearing only once have Heinz numbers A381540, more than once A381541.
A000040 lists the primes.
A003963 gives product of prime indices.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
A122111 represents conjugation in terms of Heinz numbers.
Set multipartitions: A050320, A089259, A116540, A270995, A296119, A318360, A318361.
Partition ideals: A300383, A317141, A381078, A381441, A381452, A381454.

Programs

  • Mathematica
    Table[Sort[Join@@Cases[FactorInteger[n],{p_,k_}:>ConstantArray[k,PrimePi[p]]]]//Reverse,{n,30}]

A384390 Heinz numbers of integer partitions with a unique proper way to choose disjoint strict partitions of each part.

Original entry on oeis.org

5, 7, 21, 22, 26, 33, 35, 39, 102, 114, 130, 154, 165, 170, 190, 195, 231, 238, 255, 285
Offset: 1

Views

Author

Gus Wiseman, Jun 02 2025

Keywords

Comments

By "proper" we exclude the case of all singletons, which is disjoint in the strict case.
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			The strict partition (7,2,1) with Heinz number 102 can only be properly refined as ((4,3),(2),(1)), so 102 is in the sequence. The other refinement ((7),(2),(1)) is not proper.
The terms together with their prime indices begin:
    5: {3}
    7: {4}
   21: {2,4}
   22: {1,5}
   26: {1,6}
   33: {2,5}
   35: {3,4}
   39: {2,6}
  102: {1,2,7}
  114: {1,2,8}
  130: {1,3,6}
  154: {1,4,5}
  165: {2,3,5}
  170: {1,3,7}
  190: {1,3,8}
  195: {2,3,6}
  231: {2,4,5}
  238: {1,4,7}
  255: {2,3,7}
  285: {2,3,8}
		

Crossrefs

The non-proper version is A383707, counted by A179009.
Partitions of this type are counted by A384319, non-strict A384323 (ranks A384347).
This is the unique case of A384321, counted by A384317.
This is the case of a unique proper choice in A384322.
The complement is A384349 \/ A384393.
These are positions of 1 in A384389.
A048767 is the Look-and-Say transform, fixed points A048768, counted by A217605.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.
A239455 counts Look-and-Say or section-sum partitions, ranks A351294 or A381432.
A351293 counts non-Look-and-Say or non-section-sum partitions, ranks A351295 or A381433.
A357982 counts strict partitions of each prime index, non-strict A299200.
Cf. A382912, counted by A383710, odd case A383711.
Cf. A382913, counted by A383708, odd case A383533.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    pofprop[y_]:=Select[DeleteCases[Join@@@Tuples[IntegerPartitions/@y],y],UnsameQ@@#&];
    Select[Range[100],Length[pofprop[prix[#]]]==1&]

A384005 Number of ways to choose disjoint strict integer partitions, one of each conjugate prime index of n.

Original entry on oeis.org

1, 1, 0, 1, 0, 1, 0, 2, 0, 0, 0, 1, 0, 0, 0, 2, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 2, 0, 0, 1, 0, 3, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, May 22 2025

Keywords

Examples

			The prime indices of 96 are {1,1,1,1,1,2}, conjugate (6,1), and we have choices (6,1) and (4,2,1), so a(96) = 2.
The prime indices of 108 are {1,1,2,2,2}, conjugate (5,3), and we have choices (5,3), (5,2,1), (4,3,1), so a(108) = 3.
		

Crossrefs

Adding up over all integer partitions gives A279790, strict A279375.
For multiplicities instead of indices we have conjugate of A382525.
The conjugate version is A383706.
Positive positions are A384010, conjugate A382913, counted by A383708, odd case A383533.
Positions of 0 are A384011.
Without disjointness we have A384179, conjugate A357982, non-strict version A299200.
A000041 counts integer partitions, strict A000009.
A048767 is the Look-and-Say transform, fixed points A048768, counted by A217605.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.
A239455 counts Look-and-Say or section-sum partitions, ranks A351294 or A381432.
A351293 counts non Look-and-Say or non section-sum partitions, ranks A351295 or A381433.

Programs

  • Mathematica
    pof[y_]:=Select[Join@@@Tuples[IntegerPartitions/@y],UnsameQ@@#&];
    conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Length[pof[conj[prix[n]]]],{n,100}]

Formula

a(n) = A383706(A122111(n)).

A381435 Numbers appearing more than once in A381431 (section-sum partition of prime indices).

Original entry on oeis.org

5, 7, 11, 13, 17, 19, 23, 25, 26, 29, 31, 34, 37, 38, 39, 41, 43, 46, 47, 49, 51, 52, 53, 57, 58, 59, 61, 62, 65, 67, 68, 69, 71, 73, 74, 76, 79, 82, 83, 85, 86, 87, 89, 91, 92, 93, 94, 95, 97, 101, 103, 104, 106, 107, 109, 111, 113, 115, 116, 117, 118, 119
Offset: 1

Views

Author

Gus Wiseman, Feb 27 2025

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
The section-sum partition (A381436) of a multiset or partition y is defined as follows: (1) determine and remember the sum of all distinct parts, (2) remove one instance of each distinct part, (3) repeat until no parts are left. The remembered values comprise the section-sum partition. For example, starting with (3,2,2,1,1) we get (6,3).
Equivalently, the k-th part of the section-sum partition is the sum of all (distinct) parts that appear at least k times. Compare to the definition of the conjugate of a partition, where we count parts >= k.
The conjugate of a section-sum partition is a Look-and-Say partition; see A048767, union A351294, count A239455.

Examples

			The terms together with their prime indices begin:
   5: {3}
   7: {4}
  11: {5}
  13: {6}
  17: {7}
  19: {8}
  23: {9}
  25: {3,3}
  26: {1,6}
  29: {10}
  31: {11}
  34: {1,7}
  37: {12}
  38: {1,8}
  39: {2,6}
  41: {13}
  43: {14}
  46: {1,9}
  47: {15}
  49: {4,4}
  51: {2,7}
  52: {1,1,6}
		

Crossrefs

- fixed points are A000961, A000005
- conjugate is A048767, fixed points A048768, A217605
- all numbers present are A381432, conjugate A351294
- numbers missing are A381433, conjugate A351295
- numbers appearing only once are A381434, conjugate A381540
- numbers appearing more than once are A381435 (this), conjugate A381541
A000040 lists the primes, differences A001223.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
A122111 represents conjugation in terms of Heinz numbers.
A239455 counts section-sum partitions, complement A351293.
A381436 lists section-sum partition of prime indices, conjugate A381440.
Set multipartitions: A050320, A089259, A116540, A296119, A318360, A318361.
Partition ideals: A300383, A317141, A381078, A381441, A381452, A381454.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    egs[y_]:=If[y=={},{},Table[Total[Select[Union[y],Count[y,#]>=i&]],{i,Max@@Length/@Split[y]}]];
    Select[Range[100],Count[Times@@Prime/@#&/@egs/@IntegerPartitions[Total[prix[#]]],#]>1&]

Formula

The complement is A381434 U A381433.

A383515 Heinz numbers of integer partitions that are both Look-and-Say and section-sum.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 20, 23, 25, 27, 28, 29, 31, 32, 37, 40, 41, 43, 44, 45, 47, 49, 50, 52, 53, 56, 59, 61, 64, 67, 68, 71, 73, 75, 76, 79, 80, 81, 83, 88, 89, 92, 97, 98, 99, 101, 103, 104, 107, 109, 112, 113, 116, 117, 121, 124, 125
Offset: 1

Views

Author

Gus Wiseman, May 18 2025

Keywords

Comments

First differs from A383532 in having 325.
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
An integer partition is section-sum iff it is possible to choose a disjoint family of strict partitions, one of each of its positive 0-appended differences. These are ranked by A381432.
An integer partition is Look-and-Say iff it is possible to choose a disjoint family of strict partitions, one of each of its multiplicities. These are ranked by A351294.

Examples

			The terms together with their prime indices begin:
   1: {}
   2: {1}
   3: {2}
   4: {1,1}
   5: {3}
   7: {4}
   8: {1,1,1}
   9: {2,2}
  11: {5}
  13: {6}
  16: {1,1,1,1}
  17: {7}
  19: {8}
  20: {1,1,3}
  23: {9}
  25: {3,3}
  27: {2,2,2}
  28: {1,1,4}
  29: {10}
  31: {11}
  32: {1,1,1,1,1}
		

Crossrefs

Ranking sequences are shown in parentheses below.
These partitions are counted by A383508.
A048767 is the Look-and-Say transform.
A048768 gives Look-and-Say fixed points, counted by A217605.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
A098859 counts Wilf partitions (A130091), conjugate (A383512).
A122111 represents conjugation in terms of Heinz numbers.
A239455 counts Look-and-Say partitions (A351294), complement A351293 (A351295).
A239455 counts section-sum partitions (A381432), complement A351293 (A381433).
A336866 counts non Wilf partitions (A130092), conjugate (A383513).
A381431 is the section-sum transform.
A383509 counts partitions that are Look-and-Say but not section-sum (A383516).
A383509 counts partitions that are not Look-and-Say but are section-sum (A384007).
A383510 counts partitions that are neither Look-and-Say nor section-sum (A383517).
A383511 counts partitions that are Look-and-Say and section-sum but not Wilf (A383518).

Programs

  • Mathematica
    disjointFamilies[y_]:=Select[Tuples[IntegerPartitions/@Length/@Split[y]],UnsameQ@@Join@@#&];
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
    Select[Range[100],disjointFamilies[prix[#]]!={}&&disjointFamilies[conj[prix[#]]]!={}&]
Previous Showing 11-20 of 47 results. Next