A326004
G.f.: Sum_{n>=0} (n+1)*(n+2)*(n+3)/3! * x^n * (1 + x^n)^n.
Original entry on oeis.org
1, 4, 14, 20, 55, 56, 154, 120, 305, 280, 566, 364, 1189, 560, 1520, 1376, 2429, 1140, 4570, 1540, 5226, 4544, 6304, 2600, 14685, 3556, 10934, 11980, 18215, 4960, 31882, 5984, 31289, 27160, 27150, 12636, 82093, 9880, 39920, 55160, 93631, 13244, 121178, 15180, 126875, 130696, 78224, 19600, 316645, 22940, 165386, 179844, 281399, 27720, 370090, 150976, 410629, 297560, 179830, 37820, 1208458, 41664, 229184, 489280, 801305, 450516, 987482, 54740
Offset: 0
G.f.: A(x) = 1 + 4*x + 14*x^2 + 20*x^3 + 55*x^4 + 56*x^5 + 154*x^6 + 120*x^7 + 305*x^8 + 280*x^9 + 566*x^10 + 364*x^11 + 1189*x^12 + 560*x^13 + 1520*x^14 + 1376*x^15 + 2429*x^16 + 1140*x^17 + 4570*x^18 + 1540*x^19 + 5226*x^20 + ...
where we have the following series identity:
A(x) = 1 + 4*x*(1+x) + 10*x^2*(1+x^2)^2 + 20*x^3*(1+x^3)^3 + 35*x^4*(1+x^4)^4 + 56*x^5*(1+x^5)^5 + 84*x^6*(1+x^6)^6 + 120*x^7*(1+x^7)^7 + 165*x^8*(1+x^8)^8 + 220*x^9*(1+x^9)^9 +...
is equal to
A(x) = 1/(1-x)^4 + 4*x^2/(1-x^2)^5 + 10*x^6/(1-x^3)^6 + 20*x^12/(1-x^4)^7 + 35*x^20/(1-x^5)^8 + 56*x^30/(1-x^6)^9 + 84*x^42/(1-x^7)^10 + 120*x^56/(1-x^8)^11 +...
-
{a(n) = my(A = sum(m=0,n, (m+1)*(m+2)*(m+3)/3! * x^m * (1 + x^m +x*O(x^n))^m)); polcoeff(A,n)}
for(n=0,120,print1(a(n),", "))
-
{a(n) = my(A = sum(m=0,n, (m+1)*(m+2)*(m+3)/3! * x^m * x^(m^2) / (1 - x^(m+1) +x*O(x^n))^(m+4))); polcoeff(A,n)}
for(n=0,120,print1(a(n),", "))
A326005
G.f.: Sum_{n>=0} (n+1)*(n+2)*(n+3)*(n+4)/4! * x^n * (1 + x^n)^n.
Original entry on oeis.org
1, 5, 20, 35, 100, 126, 330, 330, 775, 820, 1631, 1365, 3535, 2380, 5370, 5136, 9085, 5985, 16900, 8855, 21966, 19580, 29965, 17550, 60375, 24381, 58345, 57205, 90350, 40920, 152837, 52360, 164145, 141120, 175560, 93801, 404500, 101270, 280175, 309050, 503041, 148995, 714435, 178365, 748705, 708946, 633950, 249900, 1771645, 295135, 1120236, 1155015, 1760500, 395010, 2483110, 905576, 2622545, 2036060, 1744525, 595665, 6962328, 677040, 2343880
Offset: 0
G.f.: A(x) = 1 + 5*x + 20*x^2 + 35*x^3 + 100*x^4 + 126*x^5 + 330*x^6 + 330*x^7 + 775*x^8 + 820*x^9 + 1631*x^10 + 1365*x^11 + 3535*x^12 + 2380*x^13 + 5370*x^14 + 5136*x^15 + 9085*x^16 + 5985*x^17 + 16900*x^18 + 8855*x^19 + 21966*x^20 + ...
where we have the following series identity:
A(x) = 1 + 5*x*(1+x) + 15*x^2*(1+x^2)^2 + 35*x^3*(1+x^3)^3 + 70*x^4*(1+x^4)^4 + 126*x^5*(1+x^5)^5 + 210*x^6*(1+x^6)^6 + 330*x^7*(1+x^7)^7 + 495*x^8*(1+x^8)^8 + 715*x^9*(1+x^9)^9 +...
is equal to
A(x) = 1/(1-x)^5 + 5*x^2/(1-x^2)^6 + 15*x^6/(1-x^3)^7 + 35*x^12/(1-x^4)^8 + 70*x^20/(1-x^5)^9 + 126*x^30/(1-x^6)^10 + 210*x^42/(1-x^7)^11 + 330*x^56/(1-x^8)^12 +...
-
{a(n) = my(A = sum(m=0,n, (m+1)*(m+2)*(m+3)*(m+4)/4! * x^m * (1 + x^m +x*O(x^n))^m)); polcoeff(A,n)}
for(n=0,120,print1(a(n),", "))
-
{a(n) = my(A = sum(m=0,n, (m+1)*(m+2)*(m+3)*(m+4)/4! * x^m * x^(m^2) / (1 - x^(m+1) +x*O(x^n))^(m+5))); polcoeff(A,n)}
for(n=0,120,print1(a(n),", "))
A327249
Expansion of Sum_{k>=1} x^k * (1 + k * x^k)^k.
Original entry on oeis.org
1, 2, 1, 5, 1, 14, 1, 17, 28, 26, 1, 160, 1, 50, 251, 321, 1, 622, 1, 1607, 1030, 122, 1, 6257, 3126, 170, 2917, 12202, 1, 27291, 1, 28929, 6656, 290, 84036, 117721, 1, 362, 13183, 407121, 1, 417881, 1, 220100, 850312, 530, 1, 2246465, 823544, 2100626
Offset: 1
-
[&+[(n div d)^(d-1)*Binomial(n div d,d-1):d in Divisors(n)]:n in [1..50]]; // Marius A. Burtea, Sep 15 2019
-
nmax = 50; CoefficientList[Series[Sum[x^k (1 + k x^k)^k, {k, 1, nmax}], {x, 0, nmax}], x] // Rest
Table[DivisorSum[n, (n/#)^(# - 1) Binomial[n/#, # - 1] &], {n, 1, 50}]
-
a(n) = sumdiv(n, d, (n/d)^(d-1) * binomial(n/d,d-1)); \\ Michel Marcus, Sep 15 2019
A260361
G.f.: Sum_{n=-oo..+oo} x^n * (1 + x^n)^n, an even function.
Original entry on oeis.org
2, 4, 2, 10, 2, 12, 16, 16, 2, 50, 24, 24, 58, 28, 72, 154, 2, 36, 302, 40, 142, 270, 332, 48, 242, 472, 574, 614, 60, 60, 2282, 64, 2, 1454, 1362, 2494, 628, 76, 1940, 3304, 3642, 84, 5266, 88, 662, 13180, 3544, 96, 994, 6106, 14292, 13602, 3434, 108, 8102, 14854, 16018, 24778, 7310, 120, 35684
Offset: 0
G.f.: A(x) = 2 + 4*x^2 + 2*x^4 + 10*x^6 + 2*x^8 + 12*x^10 + 16*x^12 + 16*x^14 + 2*x^16 + 50*x^18 + 24*x^20 +...
where A(x) = 1 + P(x) + N(x) with
P(x) = x*(1+x) + x^2*(1+x^2)^2 + x^3*(1+x^3)^3 + x^4*(1+x^4)^4 + x^5*(1+x^5)^5 +...
N(x) = 1/(1+x) + x^2/(1+x^2)^2 + x^6/(1+x^3)^3 + x^12/(1+x^4)^4 + x^20/(1+x^5)^5 +...
Explicitly,
P(x) = x + 2*x^2 + x^3 + 3*x^4 + x^5 + 5*x^6 + x^7 + 5*x^8 + 4*x^9 + 6*x^10 + x^11 + 14*x^12 + x^13 + 8*x^14 + 11*x^15 + 13*x^16 + x^17 + 25*x^18 + x^19 + 22*x^20 + 22*x^21 + 12*x^22 + x^23 + 61*x^24 + 6*x^25 +...+ A217668(n)*x^n +...
N(x) = 1 - x + 2*x^2 - x^3 - x^4 - x^5 + 5*x^6 - x^7 - 3*x^8 - 4*x^9 + 6*x^10 - x^11 + 2*x^12 - x^13 + 8*x^14 - 11*x^15 - 11*x^16 - x^17 + 25*x^18 - x^19 + 2*x^20 - 22*x^21 + 12*x^22 - x^23 - 3*x^24 - 6*x^25 +...+ A260148(n)*x^n +...
-
terms = 100; max = 2 terms; Sum[x^n*(1 + x^n)^n, {n, -max, max}] + O[x]^max // CoefficientList[#, x^2]& (* Jean-François Alcover, May 16 2017 *)
-
{a(n) = local(A=1); A = sum(k=-2*n-2, 2*n+2, x^k*(1+x^k)^k + O(x^(2*n+2)) ); polcoeff(A, 2*n)}
for(n=0, 60, print1(a(n), ", "))
-
{a(n) = local(A=1); A = sum(k=-2*n-2, 2*n+2, x^(k^2-k) / (1 + x^k)^k + O(x^(2*n+2)) ); polcoeff(A, 2*n)}
for(n=0, 60, print1(a(n), ", "))
-
{a(n) = local(A=1); A = sum(k=1, sqrtint(2*n)+2, x^(k^2-k) *((1 + x^k)^k + (1 - x^k)^k) / (1 - x^(2*k) + O(x^(2*n+2)) )^k ); polcoeff(A, 2*n)}
for(n=0, 60, print1(a(n), ", "))
-
{a(n) = local(A=1); A = sum(k=-sqrtint(n)-1, n+1, x^k*((1+x^k)^(2*k) + (1-x^k)^(2*k)) + O(x^(n+1)) ); polcoeff(A, n)}
for(n=0, 60, print1(a(n), ", "))
A266330
Triangle, read by rows, of the coefficients in the g.f.: Sum_{n=-oo..+oo} x^n * y^n * (y^n - x^n)^n.
Original entry on oeis.org
-1, 1, -1, 0, 1, -1, 1, -1, 1, -1, 0, 0, 0, 1, -1, 2, 0, -2, 0, 1, -1, 0, 0, 0, 0, 0, 1, -1, 3, -1, 1, -3, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 1, -1, 4, 0, 0, 0, -4, 0, 0, 0, 1, -1, 0, -3, 0, 3, 0, 0, 0, 0, 0, 1, -1, 5, 0, 0, 0, 0, -5, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 6, -6, 1, -1, 6, 0, -6, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 7, 0, 0, 0, 0, 0, 0, -7, 0, 0, 0, 0, 0, 0, 1, -1, 0, -10, 0, 0, 0, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 8, 0, 4, 0, -4, 0, 0, 0, -8, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 9, -15, 0, 0, 0, 0, 15, 0, 0, -9, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 0
This triangle of coefficients T(n,k) begins:
-1, 1;
-1, 0, 1;
-1, 1, -1, 1;
-1, 0, 0, 0, 1;
-1, 2, 0, -2, 0, 1;
-1, 0, 0, 0, 0, 0, 1;
-1, 3, -1, 1, -3, 0, 0, 1;
-1, 0, 0, 0, 0, 0, 0, 0, 1;
-1, 4, 0, 0, 0, -4, 0, 0, 0, 1;
-1, 0, -3, 0, 3, 0, 0, 0, 0, 0, 1;
-1, 5, 0, 0, 0, 0, -5, 0, 0, 0, 0, 1;
-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1;
-1, 6, -6, 1, -1, 6, 0, -6, 0, 0, 0, 0, 0, 1;
-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1;
-1, 7, 0, 0, 0, 0, 0, 0, -7, 0, 0, 0, 0, 0, 0, 1;
-1, 0, -10, 0, 0, 0, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1;
-1, 8, 0, 4, 0, -4, 0, 0, 0, -8, 0, 0, 0, 0, 0, 0, 0, 1;
-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1;
-1, 9, -15, 0, 0, 0, 0, 15, 0, 0, -9, 0, 0, 0, 0, 0, 0, 0, 0, 1; ...
in which the g.f. of column k > 0 is given by:
z^(k-1)*(1 - z^(k-1))^(k-1) + z^(k*(k+1))/(z^(k+1) - 1)^(k+1).
...
G.f.: A(x,y) = Sum_{n=-oo..+oo} x^n * y^n * (y^n - x^n)^n may be written as
A(x,y) = Sum_{n>=0} R(n,y) * x^n / y^(n+1), where row polynomials R(n,y) consist of square powers of y:
R(n,y) = Sum_{k=0..n+1} T(n,k) * y^(k^2);
this triangle lists the coefficients of y^(k^2) in R(n,y), which begin:
R(0,y) = y - 1;
R(1,y) = y^4 - 1;
R(2,y) = y^9 - y^4 + y - 1;
R(3,y) = y^16 - 1;
R(4,y) = y^25 - 2*y^9 + 2*y - 1;
R(5,y) = y^36 - 1;
R(6,y) = y^49 - 3*y^16 + y^9 - y^4 + 3*y - 1;
R(7,y) = y^64 - 1;
R(8,y) = y^81 - 4*y^25 + 4*y - 1;
R(9,y) = y^100 + 3*y^16 - 3*y^4 - 1;
R(10,y) = y^121 - 5*y^36 + 5*y - 1;
R(11,y) = y^144 - 1;
R(12,y) = y^169 - 6*y^49 + 6*y^25 - y^16 + y^9 - 6*y^4 + 6*y - 1;
R(13,y) = y^196 - 1;
R(14,y) = y^225 - 7*y^64 + 7*y - 1;
R(15,y) = y^256 + 10*y^36 - 10*y^4 - 1;
R(16,y) = y^289 - 8*y^81 - 4*y^25 + 4*y^9 + 8*y - 1;
R(17,y) = y^324 - 1;
R(18,y) = y^361 - 9*y^100 + 15*y^49 - 15*y^4 + 9*y - 1; ...
-
/* Prints rows 0..50 of this triangle: */
{SUM=sum(n=-51,51,x^n*y^n*(y^n-x^n +O(x^51))^n); V=Vec(SUM);
T(n,k)=polcoeff(V[n+1]*y^(n+1) + y*O(y^((n+1)^2)), k^2)}
for(n=0,50,for(k=0,n+1,print1( T(n,k), ", "));print(""))
-
/* Quick print of row polynomials (informal): */
{SUM=sum(n=-51,51,x^n*y^n*(y^n-x^n +O(x^51))^n); V=Vec(SUM);
for(n=1,50,print("R("n-1",y) = "V[n]*y^n";")) }
-
/* Compare these sums (informal sanity check): */
Axy = sum(n=-16,16, x^n*y^n*(y^n-x^n +O(x^16))^n )
Axy = -(1/y)/(1-x/y) + sum(n=1,15, y^(n^2-1) * ( (x/y)^(n-1)*(1 - (x/y)^(n-1))^(n-1) + (x/y)^(n*(n+1)) / ((x/y)^(n+1) - 1)^(n+1) ) +O(x^16) )
Comments