cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A326004 G.f.: Sum_{n>=0} (n+1)*(n+2)*(n+3)/3! * x^n * (1 + x^n)^n.

Original entry on oeis.org

1, 4, 14, 20, 55, 56, 154, 120, 305, 280, 566, 364, 1189, 560, 1520, 1376, 2429, 1140, 4570, 1540, 5226, 4544, 6304, 2600, 14685, 3556, 10934, 11980, 18215, 4960, 31882, 5984, 31289, 27160, 27150, 12636, 82093, 9880, 39920, 55160, 93631, 13244, 121178, 15180, 126875, 130696, 78224, 19600, 316645, 22940, 165386, 179844, 281399, 27720, 370090, 150976, 410629, 297560, 179830, 37820, 1208458, 41664, 229184, 489280, 801305, 450516, 987482, 54740
Offset: 0

Views

Author

Paul D. Hanna, Jun 01 2019

Keywords

Comments

More generally, the following sums are equal:
(1) Sum_{n>=0} binomial(n+k-1, n) * r^n * (p + q^n)^n,
(2) Sum_{n>=0} binomial(n+k-1, n) * r^n * q^(n^2) / (1 - p*q^n*r)^(n+k),
for any fixed integer k; here, k = 4 and p = 1, q = x, r = x.

Examples

			G.f.: A(x) = 1 + 4*x + 14*x^2 + 20*x^3 + 55*x^4 + 56*x^5 + 154*x^6 + 120*x^7 + 305*x^8 + 280*x^9 + 566*x^10 + 364*x^11 + 1189*x^12 + 560*x^13 + 1520*x^14 + 1376*x^15 + 2429*x^16 + 1140*x^17 + 4570*x^18 + 1540*x^19 + 5226*x^20 + ...
where we have the following series identity:
A(x) = 1 + 4*x*(1+x) + 10*x^2*(1+x^2)^2 + 20*x^3*(1+x^3)^3 + 35*x^4*(1+x^4)^4 + 56*x^5*(1+x^5)^5  + 84*x^6*(1+x^6)^6 + 120*x^7*(1+x^7)^7 + 165*x^8*(1+x^8)^8 + 220*x^9*(1+x^9)^9 +...
is equal to
A(x) = 1/(1-x)^4 + 4*x^2/(1-x^2)^5 + 10*x^6/(1-x^3)^6 + 20*x^12/(1-x^4)^7 + 35*x^20/(1-x^5)^8 + 56*x^30/(1-x^6)^9 + 84*x^42/(1-x^7)^10 + 120*x^56/(1-x^8)^11 +...
		

Crossrefs

Cf. A217668 (k=1), A326002 (k=2), A326003 (k=3), A326005 (k=5).

Programs

  • PARI
    {a(n) = my(A = sum(m=0,n, (m+1)*(m+2)*(m+3)/3! * x^m * (1 + x^m +x*O(x^n))^m)); polcoeff(A,n)}
    for(n=0,120,print1(a(n),", "))
    
  • PARI
    {a(n) = my(A = sum(m=0,n, (m+1)*(m+2)*(m+3)/3! * x^m * x^(m^2) / (1 - x^(m+1) +x*O(x^n))^(m+4))); polcoeff(A,n)}
    for(n=0,120,print1(a(n),", "))

Formula

Generating functions.
(1) Sum_{n>=0} (n+1)*(n+2)*(n+3)/3! * x^n * (1 + x^n)^n.
(2) Sum_{n>=0} (n+1)*(n+2)*(n+3)/3! * x^(n*(n+1)) / (1 - x^(n+1))^(n+4).

A326005 G.f.: Sum_{n>=0} (n+1)*(n+2)*(n+3)*(n+4)/4! * x^n * (1 + x^n)^n.

Original entry on oeis.org

1, 5, 20, 35, 100, 126, 330, 330, 775, 820, 1631, 1365, 3535, 2380, 5370, 5136, 9085, 5985, 16900, 8855, 21966, 19580, 29965, 17550, 60375, 24381, 58345, 57205, 90350, 40920, 152837, 52360, 164145, 141120, 175560, 93801, 404500, 101270, 280175, 309050, 503041, 148995, 714435, 178365, 748705, 708946, 633950, 249900, 1771645, 295135, 1120236, 1155015, 1760500, 395010, 2483110, 905576, 2622545, 2036060, 1744525, 595665, 6962328, 677040, 2343880
Offset: 0

Views

Author

Paul D. Hanna, Jun 01 2019

Keywords

Comments

More generally, the following sums are equal:
(1) Sum_{n>=0} binomial(n+k-1, n) * r^n * (p + q^n)^n,
(2) Sum_{n>=0} binomial(n+k-1, n) * r^n * q^(n^2) / (1 - p*q^n*r)^(n+k),
for any fixed integer k; here, k = 5 and p = 1, q = x, r = x.

Examples

			G.f.: A(x) = 1 + 5*x + 20*x^2 + 35*x^3 + 100*x^4 + 126*x^5 + 330*x^6 + 330*x^7 + 775*x^8 + 820*x^9 + 1631*x^10 + 1365*x^11 + 3535*x^12 + 2380*x^13 + 5370*x^14 + 5136*x^15 + 9085*x^16 + 5985*x^17 + 16900*x^18 + 8855*x^19 + 21966*x^20 + ...
where we have the following series identity:
A(x) = 1 + 5*x*(1+x) + 15*x^2*(1+x^2)^2 + 35*x^3*(1+x^3)^3 + 70*x^4*(1+x^4)^4 + 126*x^5*(1+x^5)^5  + 210*x^6*(1+x^6)^6 + 330*x^7*(1+x^7)^7 + 495*x^8*(1+x^8)^8 + 715*x^9*(1+x^9)^9 +...
is equal to
A(x) = 1/(1-x)^5 + 5*x^2/(1-x^2)^6 + 15*x^6/(1-x^3)^7 + 35*x^12/(1-x^4)^8 + 70*x^20/(1-x^5)^9 + 126*x^30/(1-x^6)^10 + 210*x^42/(1-x^7)^11 + 330*x^56/(1-x^8)^12 +...
		

Crossrefs

Cf. A217668 (k=1), A326002 (k=2), A326003 (k=3), A326004 (k=4).

Programs

  • PARI
    {a(n) = my(A = sum(m=0,n, (m+1)*(m+2)*(m+3)*(m+4)/4! * x^m * (1 + x^m +x*O(x^n))^m)); polcoeff(A,n)}
    for(n=0,120,print1(a(n),", "))
    
  • PARI
    {a(n) = my(A = sum(m=0,n, (m+1)*(m+2)*(m+3)*(m+4)/4! * x^m * x^(m^2) / (1 - x^(m+1) +x*O(x^n))^(m+5))); polcoeff(A,n)}
    for(n=0,120,print1(a(n),", "))

Formula

Generating functions.
(1) Sum_{n>=0} (n+1)*(n+2)*(n+3)*(n+4)/4! * x^n * (1 + x^n)^n.
(2) Sum_{n>=0} (n+1)*(n+2)*(n+3)*(n+4)/4! * x^(n*(n+1)) / (1 - x^(n+1))^(n+5).

A327249 Expansion of Sum_{k>=1} x^k * (1 + k * x^k)^k.

Original entry on oeis.org

1, 2, 1, 5, 1, 14, 1, 17, 28, 26, 1, 160, 1, 50, 251, 321, 1, 622, 1, 1607, 1030, 122, 1, 6257, 3126, 170, 2917, 12202, 1, 27291, 1, 28929, 6656, 290, 84036, 117721, 1, 362, 13183, 407121, 1, 417881, 1, 220100, 850312, 530, 1, 2246465, 823544, 2100626
Offset: 1

Views

Author

Ilya Gutkovskiy, Sep 15 2019

Keywords

Crossrefs

Cf. A006005 (positions of 1's), A087909, A217668, A260180, A327238.

Programs

  • Magma
    [&+[(n div d)^(d-1)*Binomial(n div d,d-1):d in Divisors(n)]:n in [1..50]]; // Marius A. Burtea, Sep 15 2019
    
  • Mathematica
    nmax = 50; CoefficientList[Series[Sum[x^k (1 + k x^k)^k, {k, 1, nmax}], {x, 0, nmax}], x] // Rest
    Table[DivisorSum[n, (n/#)^(# - 1) Binomial[n/#, # - 1] &], {n, 1, 50}]
  • PARI
    a(n) = sumdiv(n, d, (n/d)^(d-1) * binomial(n/d,d-1)); \\ Michel Marcus, Sep 15 2019

Formula

a(n) = Sum_{d|n} (n/d)^(d-1) * binomial(n/d,d-1).

A260361 G.f.: Sum_{n=-oo..+oo} x^n * (1 + x^n)^n, an even function.

Original entry on oeis.org

2, 4, 2, 10, 2, 12, 16, 16, 2, 50, 24, 24, 58, 28, 72, 154, 2, 36, 302, 40, 142, 270, 332, 48, 242, 472, 574, 614, 60, 60, 2282, 64, 2, 1454, 1362, 2494, 628, 76, 1940, 3304, 3642, 84, 5266, 88, 662, 13180, 3544, 96, 994, 6106, 14292, 13602, 3434, 108, 8102, 14854, 16018, 24778, 7310, 120, 35684
Offset: 0

Views

Author

Paul D. Hanna, Jul 23 2015

Keywords

Comments

Compare to the curious identities:
(1) Sum_{n=-oo..+oo} x^n * (1 - x^n)^n = 0.
(2) Sum_{n=-oo..+oo} (-x)^n * (1 + x^n)^n = 0.

Examples

			G.f.: A(x) = 2 + 4*x^2 + 2*x^4 + 10*x^6 + 2*x^8 + 12*x^10 + 16*x^12 + 16*x^14 + 2*x^16 + 50*x^18 + 24*x^20 +...
where A(x) = 1 + P(x) + N(x) with
P(x) = x*(1+x) + x^2*(1+x^2)^2 + x^3*(1+x^3)^3 + x^4*(1+x^4)^4 + x^5*(1+x^5)^5 +...
N(x) = 1/(1+x) + x^2/(1+x^2)^2 + x^6/(1+x^3)^3 + x^12/(1+x^4)^4 + x^20/(1+x^5)^5 +...
Explicitly,
P(x) = x + 2*x^2 + x^3 + 3*x^4 + x^5 + 5*x^6 + x^7 + 5*x^8 + 4*x^9 + 6*x^10 + x^11 + 14*x^12 + x^13 + 8*x^14 + 11*x^15 + 13*x^16 + x^17 + 25*x^18 + x^19 + 22*x^20 + 22*x^21 + 12*x^22 + x^23 + 61*x^24 + 6*x^25 +...+ A217668(n)*x^n +...
N(x) = 1 - x + 2*x^2 - x^3 - x^4 - x^5 + 5*x^6 - x^7 - 3*x^8 - 4*x^9 + 6*x^10 - x^11 + 2*x^12 - x^13 + 8*x^14 - 11*x^15 - 11*x^16 - x^17 + 25*x^18 - x^19 + 2*x^20 - 22*x^21 + 12*x^22 - x^23 - 3*x^24 - 6*x^25 +...+ A260148(n)*x^n +...
		

Crossrefs

Programs

  • Mathematica
    terms = 100; max = 2 terms; Sum[x^n*(1 + x^n)^n, {n, -max, max}] + O[x]^max // CoefficientList[#, x^2]& (* Jean-François Alcover, May 16 2017 *)
  • PARI
    {a(n) = local(A=1); A = sum(k=-2*n-2, 2*n+2, x^k*(1+x^k)^k + O(x^(2*n+2)) ); polcoeff(A, 2*n)}
    for(n=0, 60, print1(a(n), ", "))
    
  • PARI
    {a(n) = local(A=1); A = sum(k=-2*n-2, 2*n+2, x^(k^2-k) / (1 + x^k)^k  + O(x^(2*n+2)) ); polcoeff(A, 2*n)}
    for(n=0, 60, print1(a(n), ", "))
    
  • PARI
    {a(n) = local(A=1); A = sum(k=1, sqrtint(2*n)+2, x^(k^2-k) *((1 + x^k)^k + (1 - x^k)^k) / (1 - x^(2*k)  + O(x^(2*n+2)) )^k ); polcoeff(A, 2*n)}
    for(n=0, 60, print1(a(n), ", "))
    
  • PARI
    {a(n) = local(A=1); A = sum(k=-sqrtint(n)-1, n+1, x^k*((1+x^k)^(2*k) + (1-x^k)^(2*k)) + O(x^(n+1)) ); polcoeff(A, n)}
    for(n=0, 60, print1(a(n), ", "))

Formula

G.f.: Sum_{n=-oo..+oo} (-x)^n * (1 - x^n)^n.
G.f.: Sum_{n=-oo..+oo} x^(n^2-n) / (1 + x^n)^n.
G.f.: Sum_{n=-oo..+oo} x^(n^2-n) / (1 - x^n)^n.
G.f.: Sum_{n>=1} x^(n^2-n) *((1 + x^n)^n + (1 - x^n)^n) / (1 - x^(2*n))^n.
G.f.: Sum_{n=-oo..+oo} x^n * ((1 + x^n)^(2*n) + (1 - x^n)^(2*n)) = Sum_{n>=0} a(n)*x^n.
a(n) = 2*A260147(n).
a(2^n) = 2 for n > 0 (conjecture).
a(p) = 2*p+2 for primes p > 3 (conjecture).

A266330 Triangle, read by rows, of the coefficients in the g.f.: Sum_{n=-oo..+oo} x^n * y^n * (y^n - x^n)^n.

Original entry on oeis.org

-1, 1, -1, 0, 1, -1, 1, -1, 1, -1, 0, 0, 0, 1, -1, 2, 0, -2, 0, 1, -1, 0, 0, 0, 0, 0, 1, -1, 3, -1, 1, -3, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 1, -1, 4, 0, 0, 0, -4, 0, 0, 0, 1, -1, 0, -3, 0, 3, 0, 0, 0, 0, 0, 1, -1, 5, 0, 0, 0, 0, -5, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 6, -6, 1, -1, 6, 0, -6, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 7, 0, 0, 0, 0, 0, 0, -7, 0, 0, 0, 0, 0, 0, 1, -1, 0, -10, 0, 0, 0, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 8, 0, 4, 0, -4, 0, 0, 0, -8, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 9, -15, 0, 0, 0, 0, 15, 0, 0, -9, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 0

Views

Author

Paul D. Hanna, Dec 27 2015

Keywords

Comments

Compare to the curious identity: Sum_{n=-oo..+oo} x^n * (1 - x^n)^n = 0.
Note that the g.f.:
A(x,y) = Sum_{n=-oo..+oo} x^n * y^n * (y^n - x^n)^n
may be written
A(x,y) = Sum_{n>=0} R(n,y) * x^n / y^(n+1)
such that row polynomials R(n,y) consist of square powers of y:
R(n,y) = Sum_{k=0..n+1} T(n,k) * y^(k^2).

Examples

			This triangle of coefficients T(n,k) begins:
  -1, 1;
  -1, 0, 1;
  -1, 1, -1, 1;
  -1, 0, 0, 0, 1;
  -1, 2, 0, -2, 0, 1;
  -1, 0, 0, 0, 0, 0, 1;
  -1, 3, -1, 1, -3, 0, 0, 1;
  -1, 0, 0, 0, 0, 0, 0, 0, 1;
  -1, 4, 0, 0, 0, -4, 0, 0, 0, 1;
  -1, 0, -3, 0, 3, 0, 0, 0, 0, 0, 1;
  -1, 5, 0, 0, 0, 0, -5, 0, 0, 0, 0, 1;
  -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1;
  -1, 6, -6, 1, -1, 6, 0, -6, 0, 0, 0, 0, 0, 1;
  -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1;
  -1, 7, 0, 0, 0, 0, 0, 0, -7, 0, 0, 0, 0, 0, 0, 1;
  -1, 0, -10, 0, 0, 0, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1;
  -1, 8, 0, 4, 0, -4, 0, 0, 0, -8, 0, 0, 0, 0, 0, 0, 0, 1;
  -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1;
  -1, 9, -15, 0, 0, 0, 0, 15, 0, 0, -9, 0, 0, 0, 0, 0, 0, 0, 0, 1; ...
in which the g.f. of column k > 0 is given by:
z^(k-1)*(1 - z^(k-1))^(k-1) + z^(k*(k+1))/(z^(k+1) - 1)^(k+1).
...
G.f.: A(x,y) = Sum_{n=-oo..+oo} x^n * y^n * (y^n - x^n)^n may be written as
A(x,y) = Sum_{n>=0} R(n,y) * x^n / y^(n+1), where row polynomials R(n,y) consist of square powers of y:
R(n,y) = Sum_{k=0..n+1} T(n,k) * y^(k^2);
this triangle lists the coefficients of y^(k^2) in R(n,y), which begin:
  R(0,y) = y - 1;
  R(1,y) = y^4 - 1;
  R(2,y) = y^9 - y^4 + y - 1;
  R(3,y) = y^16 - 1;
  R(4,y) = y^25 - 2*y^9 + 2*y - 1;
  R(5,y) = y^36 - 1;
  R(6,y) = y^49 - 3*y^16 + y^9 - y^4 + 3*y - 1;
  R(7,y) = y^64 - 1;
  R(8,y) = y^81 - 4*y^25 + 4*y - 1;
  R(9,y) = y^100 + 3*y^16 - 3*y^4 - 1;
  R(10,y) = y^121 - 5*y^36 + 5*y - 1;
  R(11,y) = y^144 - 1;
  R(12,y) = y^169 - 6*y^49 + 6*y^25 - y^16 + y^9 - 6*y^4 + 6*y - 1;
  R(13,y) = y^196 - 1;
  R(14,y) = y^225 - 7*y^64 + 7*y - 1;
  R(15,y) = y^256 + 10*y^36 - 10*y^4 - 1;
  R(16,y) = y^289 - 8*y^81 - 4*y^25 + 4*y^9 + 8*y - 1;
  R(17,y) = y^324 - 1;
  R(18,y) = y^361 - 9*y^100 + 15*y^49 - 15*y^4 + 9*y - 1; ...
		

Crossrefs

Cf. A217668, A260147 (y=-1).

Programs

  • PARI
    /* Prints rows 0..50 of this triangle: */
    {SUM=sum(n=-51,51,x^n*y^n*(y^n-x^n +O(x^51))^n); V=Vec(SUM);
    T(n,k)=polcoeff(V[n+1]*y^(n+1) + y*O(y^((n+1)^2)), k^2)}
    for(n=0,50,for(k=0,n+1,print1( T(n,k), ", "));print(""))
    
  • PARI
    /* Quick print of row polynomials (informal): */
    {SUM=sum(n=-51,51,x^n*y^n*(y^n-x^n +O(x^51))^n); V=Vec(SUM);
    for(n=1,50,print("R("n-1",y) = "V[n]*y^n";")) }
    
  • PARI
    /* Compare these sums (informal sanity check): */
    Axy = sum(n=-16,16, x^n*y^n*(y^n-x^n +O(x^16))^n )
    Axy = -(1/y)/(1-x/y) + sum(n=1,15, y^(n^2-1) * ( (x/y)^(n-1)*(1 - (x/y)^(n-1))^(n-1) + (x/y)^(n*(n+1)) / ((x/y)^(n+1) - 1)^(n+1) ) +O(x^16) )

Formula

G.f.: -(1/y)/(1-z) + (1/y) * Sum_{n>=1} y^(n^2) * ( z^(n-1)*(1 - z^(n-1))^(n-1) + z^(n*(n+1)) / (z^(n+1) - 1)^(n+1) ) = Sum_{n=-oo..+oo} x^n * y^n * (y^n - x^n)^n, where z = x/y.
Row sums are all zeros.
Row sums of absolute values of terms yield 2 * A217668(n) for row n>=0.
Sum_{k=0..2*n+1} (-1)^k * T(2*n,k) = (-2) * A260147(n) for n>=0.
Sum_{k=0..2*n+2} (-1)^k * T(2*n+1,k) = 0 for n>=0.
Sum_{k=0..2*n+1} I^(k^2) * T(2*n,k) = (I-1) * A260147(n) for n>=0, where I^2 = -1.
Sum_{k=0..2*n+2} I^(k^2) * T(2*n+1,k) = 0 for n>=0, where I^2 = -1.

A360771 Expansion of Sum_{k>=0} (x * (2 + x^k))^k.

Original entry on oeis.org

1, 2, 5, 8, 20, 32, 77, 128, 288, 518, 1104, 2048, 4313, 8192, 16832, 32848, 66568, 131072, 264688, 524288, 1053737, 2097824, 4205568, 8388608, 16803744, 33554442, 67162112, 134222336, 268550704, 536870912, 1073999165, 2147483648, 4295493376, 8589962752
Offset: 0

Views

Author

Seiichi Manyama, Feb 20 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, 2^(# - n/# + 1) * Binomial[#, n/# - 1] &]; a[0] = 1; Array[a, 30, 0] (* Amiram Eldar, Aug 02 2023 *)
  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=0, N, (x*(2+x^k))^k))
    
  • PARI
    a(n) = if(n==0, 1, sumdiv(n, d, 2^(d-n/d+1)*binomial(d, n/d-1)));

Formula

a(n) = Sum_{d|n} 2^(d-n/d+1) * binomial(d,n/d-1) for n > 0.
If p is an odd prime, a(p) = 2^p.

A370668 Expansion of Sum_{k>0} k! * ( x * (1+x^k) )^k.

Original entry on oeis.org

1, 3, 6, 28, 120, 740, 5040, 40416, 362898, 3629400, 39916800, 479006070, 6227020800, 87178326480, 1307674369200, 20922790210656, 355687428096000, 6402373709004720, 121645100408832000, 2432902008212929224, 51090942171709545840, 1124000727778046764800
Offset: 1

Views

Author

Seiichi Manyama, Feb 25 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(sum(k=1, N, k!*(x*(1+x^k))^k))
    
  • PARI
    a(n) = sumdiv(n,d, d!*binomial(d, n/d-1));

Formula

a(n) = Sum_{d|n} d! * binomial(d,n/d-1).
If p is an odd prime, a(p) = p!.
Previous Showing 11-17 of 17 results.