A218725
a(n) = (22^n - 1)/21.
Original entry on oeis.org
0, 1, 23, 507, 11155, 245411, 5399043, 118778947, 2613136835, 57489010371, 1264758228163, 27824681019587, 612142982430915, 13467145613480131, 296277203496562883, 6518098476924383427, 143398166492336435395, 3154759662831401578691, 69404712582290834731203
Offset: 0
Cf. similar sequences of the form (k^n-1)/(k-1):
A000225,
A003462,
A002450,
A003463,
A003464,
A023000,
A023001,
A002452,
A002275,
A016123,
A016125,
A091030,
A135519,
A135518,
A131865,
A091045,
A218721,
A218722,
A064108,
A218724-
A218734,
A132469,
A218736-
A218753,
A133853,
A094028,
A218723.
-
[n le 2 select n-1 else 23*Self(n-1) - 22*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Nov 07 2012
-
LinearRecurrence[{23, -22}, {0, 1}, 30] (* Vincenzo Librandi, Nov 07 2012 *)
-
A218725(n):=(22^n-1)/21$ makelist(A218725(n),n,0,30); /* Martin Ettl, Nov 06 2012 */
-
A218725(n)=22^n\21
A218737
a(n) = (34^n - 1)/33.
Original entry on oeis.org
0, 1, 35, 1191, 40495, 1376831, 46812255, 1591616671, 54114966815, 1839908871711, 62556901638175, 2126934655697951, 72315778293730335, 2458736461986831391, 83597039707552267295, 2842299350056777088031, 96638177901930420993055, 3285698048665634313763871
Offset: 0
Cf. similar sequences of the form (k^n-1)/(k-1):
A000225,
A003462,
A002450,
A003463,
A003464,
A023000,
A023001,
A002452,
A002275,
A016123,
A016125,
A091030,
A135519,
A135518,
A131865,
A091045,
A218721,
A218722,
A064108,
A218724-
A218734,
A132469,
A218736-
A218753,
A133853,
A094028,
A218723.
-
[n le 2 select n-1 else 35*Self(n-1)-34*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Nov 07 2012
-
LinearRecurrence[{35, -34}, {0, 1}, 30] (* Vincenzo Librandi, Nov 07 2012 *)
-
A218737(n):=(34^n-1)/33$
makelist(A218737(n),n,0,30); /* Martin Ettl, Nov 07 2012 */
-
A218737(n)=34^n\33
A218738
a(n) = (35^n - 1)/34.
Original entry on oeis.org
0, 1, 36, 1261, 44136, 1544761, 54066636, 1892332261, 66231629136, 2318107019761, 81133745691636, 2839681099207261, 99388838472254136, 3478609346528894761, 121751327128511316636, 4261296449497896082261, 149145375732426362879136, 5220088150634922700769761
Offset: 0
Cf. similar sequences of the form (k^n-1)/(k-1):
A000225,
A003462,
A002450,
A003463,
A003464,
A023000,
A023001,
A002452,
A002275,
A016123,
A016125,
A091030,
A135519,
A135518,
A131865,
A091045,
A218721,
A218722,
A064108,
A218724-
A218734,
A132469,
A218736-
A218753,
A133853,
A094028,
A218723.
-
[n le 2 select n-1 else 36*Self(n-1)-35*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Nov 07 2012
-
LinearRecurrence[{36, -35}, {0, 1}, 30] (* Vincenzo Librandi, Nov 07 2012 *)
-
A218738(n):=(35^n-1)/34$
makelist(A218738(n),n,0,30); /* Martin Ettl, Nov 07 2012 */
-
A218738(n)=35^n\34
A218745
a(n) = (42^n - 1)/41.
Original entry on oeis.org
0, 1, 43, 1807, 75895, 3187591, 133878823, 5622910567, 236162243815, 9918814240231, 416590198089703, 17496788319767527, 734865109430236135, 30864334596069917671, 1296302053034936542183, 54444686227467334771687, 2286676821553628060410855, 96040426505252378537255911
Offset: 0
Cf. similar sequences of the form (k^n-1)/(k-1):
A000225,
A003462,
A002450,
A003463,
A003464,
A023000,
A023001,
A002452,
A002275,
A016123,
A016125,
A091030,
A135519,
A135518,
A131865,
A091045,
A218721,
A218722,
A064108,
A218724-
A218734,
A132469,
A218736-
A218753,
A133853,
A094028,
A218723.
-
[n le 2 select n-1 else 43*Self(n-1) - 42*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Nov 07 2012
-
LinearRecurrence[{43, -42}, {0, 1}, 30] (* Vincenzo Librandi, Nov 07 2012 *)
(42^Range[0,20]-1)/41 (* Harvey P. Dale, May 08 2024 *)
-
A218745(n):=(42^n-1)/41$
makelist(A218745(n),n,0,30); /* Martin Ettl, Nov 07 2012 */
-
A218745(n)=42^n\41
A258643
Irregular triangle read by rows, n >= 1, k >= 0: T(n,k) is the number of distinct patterns of n X n squares with k holes that are squares (see the construction rule in comments).
Original entry on oeis.org
1, 1, 2, 1, 3, 1, 2, 9, 7, 4, 4, 5, 2, 25, 11, 40, 8, 33, 3, 16, 0, 4
Offset: 1
Irregular triangle begins:
n\k 0 1 2 3 4 5 6 7 8 ...
1 1
2 1
3 2 1
4 3 1 2
5 9 7 4 4 5 2
6 25 11 40 8 33 3 16 0 4
...
A218727
a(n) = (24^n - 1)/23.
Original entry on oeis.org
0, 1, 25, 601, 14425, 346201, 8308825, 199411801, 4785883225, 114861197401, 2756668737625, 66160049703001, 1587841192872025, 38108188628928601, 914596527094286425, 21950316650262874201, 526807599606308980825, 12643382390551415539801, 303441177373233972955225
Offset: 0
Cf. similar sequences of the form (k^n-1)/(k-1):
A000225,
A003462,
A002450,
A003463,
A003464,
A023000,
A023001,
A002452,
A002275,
A016123,
A016125,
A091030,
A135519,
A135518,
A131865,
A091045,
A218721,
A218722,
A064108,
A218724-
A218734,
A132469,
A218736-
A218753,
A133853,
A094028,
A218723.
-
[n le 2 select n-1 else 25*Self(n-1)-24*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Nov 07 2012
-
LinearRecurrence[{25, -24}, {0, 1}, 30] (* Vincenzo Librandi, Nov 07 2012 *)
-
A218727(n):=(24^n-1)/23$
makelist(A218727(n),n,0,30); /* Martin Ettl, Nov 07 2012 */
-
A218727(n)=24^n\23
A218729
a(n) = (26^n - 1)/25.
Original entry on oeis.org
0, 1, 27, 703, 18279, 475255, 12356631, 321272407, 8353082583, 217180147159, 5646683826135, 146813779479511, 3817158266467287, 99246114928149463, 2580398988131886039, 67090373691429037015, 1744349715977154962391, 45353092615406029022167, 1179180408000556754576343
Offset: 0
Cf. similar sequences of the form (k^n-1)/(k-1):
A000225,
A003462,
A002450,
A003463,
A003464,
A023000,
A023001,
A002452,
A002275,
A016123,
A016125,
A091030,
A135519,
A135518,
A131865,
A091045,
A218721,
A218722,
A064108,
A218724-
A218734,
A132469,
A218736-
A218753,
A133853,
A094028,
A218723.
-
[n le 2 select n-1 else 27*Self(n-1)-26*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Nov 07 2012
-
LinearRecurrence[{27, -26}, {0, 1}, 30] (* Vincenzo Librandi, Nov 07 2012 *)
-
A218729(n):=(26^n-1)/25$
makelist(A218729(n),n,0,30); /* Martin Ettl, Nov 07 2012 */
-
A218729(n)=26^n\25
A218730
a(n) = (27^n - 1)/26.
Original entry on oeis.org
0, 1, 28, 757, 20440, 551881, 14900788, 402321277, 10862674480, 293292210961, 7918889695948, 213810021790597, 5772870588346120, 155867505885345241, 4208422658904321508, 113627411790416680717, 3067940118341250379360, 82834383195213760242721, 2236528346270771526553468
Offset: 0
Cf. similar sequences of the form (k^n-1)/(k-1):
A000225,
A003462,
A002450,
A003463,
A003464,
A023000,
A023001,
A002452,
A002275,
A016123,
A016125,
A091030,
A135519,
A135518,
A131865,
A091045,
A218721,
A218722,
A064108,
A218724-
A218734,
A132469,
A218736-
A218753,
A133853,
A094028,
A218723.
-
[n le 2 select n-1 else 28*Self(n-1)-27*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Nov 07 2012
-
LinearRecurrence[{28, -27}, {0, 1}, 30] (* Vincenzo Librandi, Nov 07 2012 *)
-
A218730(n):=(27^n-1)/26$
makelist(A218730(n),n,0,30); /* Martin Ettl, Nov 07 2012 */
-
a(n)=27^n\26
A218731
a(n) = (28^n - 1)/27.
Original entry on oeis.org
0, 1, 29, 813, 22765, 637421, 17847789, 499738093, 13992666605, 391794664941, 10970250618349, 307167017313773, 8600676484785645, 240818941573998061, 6742930364071945709, 188802050194014479853, 5286457405432405435885, 148020807352107352204781, 4144582605859005861733869
Offset: 0
Cf. similar sequences of the form (k^n-1)/(k-1):
A000225,
A003462,
A002450,
A003463,
A003464,
A023000,
A023001,
A002452,
A002275,
A016123,
A016125,
A091030,
A135519,
A135518,
A131865,
A091045,
A218721,
A218722,
A064108,
A218724-
A218734,
A132469,
A218736-
A218753,
A133853,
A094028,
A218723.
-
[n le 2 select n-1 else 29*Self(n-1)-28*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Nov 07 2012
-
LinearRecurrence[{29, -28}, {0, 1}, 30] (* Vincenzo Librandi, Nov 07 2012 *)
-
A218731(n):=(28^n-1)/27$
makelist(A218731(n),n,0,30); /* Martin Ettl, Nov 07 2012 */
-
A218731(n)=28^n\27
A218739
a(n) = (36^n - 1)/35.
Original entry on oeis.org
0, 1, 37, 1333, 47989, 1727605, 62193781, 2238976117, 80603140213, 2901713047669, 104461669716085, 3760620109779061, 135382323952046197, 4873763662273663093, 175455491841851871349, 6316397706306667368565, 227390317427040025268341, 8186051427373440909660277
Offset: 0
Cf. similar sequences of the form (k^n-1)/(k-1):
A000225,
A003462,
A002450,
A003463,
A003464,
A023000,
A023001,
A002452,
A002275,
A016123,
A016125,
A091030,
A135519,
A135518,
A131865,
A091045,
A218721,
A218722,
A064108,
A218724-
A218734,
A132469,
A218736-
A218753,
A133853,
A094028,
A218723.
-
[n le 2 select n-1 else 37*Self(n-1)-36*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Nov 07 2012
-
LinearRecurrence[{37, -36}, {0, 1}, 30] (* Vincenzo Librandi, Nov 07 2012 *)
Join[{0},Accumulate[36^Range[0,20]]] (* Harvey P. Dale, Jun 03 2015 *)
-
A218739(n):=(36^n-1)/35$
makelist(A218739(n),n,0,30); /* Martin Ettl, Nov 07 2012 */
-
A218739(n)=36^n\35
Comments