cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 36 results. Next

A218725 a(n) = (22^n - 1)/21.

Original entry on oeis.org

0, 1, 23, 507, 11155, 245411, 5399043, 118778947, 2613136835, 57489010371, 1264758228163, 27824681019587, 612142982430915, 13467145613480131, 296277203496562883, 6518098476924383427, 143398166492336435395, 3154759662831401578691, 69404712582290834731203
Offset: 0

Views

Author

M. F. Hasler, Nov 04 2012

Keywords

Comments

Partial sums of powers of 22; q-integers for q=22: Diagonal k=1 in the triangle A022186.
Partial sums are in A014907. Also, the sequence is related to A014940 by A014940(n) = n*a(n) - Sum_{i=0..n-1} a(i) for n > 0. [Bruno Berselli, Nov 06 2012]

Crossrefs

Programs

Formula

a(n) = floor(22^n/21).
G.f.: x/((1-x)*(1-22*x)). [Bruno Berselli, Nov 06 2012]
a(n) = 23*a(n-1) - 22*a(n-2). - Vincenzo Librandi, Nov 07 2012
E.g.f.: exp(x)*(exp(21*x) - 1)/21. - Elmo R. Oliveira, Aug 29 2024

A218737 a(n) = (34^n - 1)/33.

Original entry on oeis.org

0, 1, 35, 1191, 40495, 1376831, 46812255, 1591616671, 54114966815, 1839908871711, 62556901638175, 2126934655697951, 72315778293730335, 2458736461986831391, 83597039707552267295, 2842299350056777088031, 96638177901930420993055, 3285698048665634313763871
Offset: 0

Views

Author

M. F. Hasler, Nov 04 2012

Keywords

Comments

Partial sums of powers of 34 (A009978).

Crossrefs

Programs

Formula

From Vincenzo Librandi, Nov 07 2012: (Start)
G.f.: x/((1 - x)*(1 - 34*x)).
a(n) = 35*a(n-1) - 34*a(n-2).
a(n) = floor(34^n/33). (End)
E.g.f.: exp(x)*(exp(33*x) - 1)/33. - Stefano Spezia, Mar 26 2023

A218738 a(n) = (35^n - 1)/34.

Original entry on oeis.org

0, 1, 36, 1261, 44136, 1544761, 54066636, 1892332261, 66231629136, 2318107019761, 81133745691636, 2839681099207261, 99388838472254136, 3478609346528894761, 121751327128511316636, 4261296449497896082261, 149145375732426362879136, 5220088150634922700769761
Offset: 0

Views

Author

M. F. Hasler, Nov 04 2012

Keywords

Comments

Partial sums of powers of 35 (A009979).

Crossrefs

Programs

Formula

From Vincenzo Librandi, Nov 07 2012: (Start)
G.f.: x/((1 - x)*(1 - 35*x)).
a(n) = 36*a(n-1) - 35*a(n-2).
a(n) = floor(35^n/34). (End)
E.g.f.: exp(x)*(exp(34*x) - 1)/34. - Stefano Spezia, Mar 28 2023

A218745 a(n) = (42^n - 1)/41.

Original entry on oeis.org

0, 1, 43, 1807, 75895, 3187591, 133878823, 5622910567, 236162243815, 9918814240231, 416590198089703, 17496788319767527, 734865109430236135, 30864334596069917671, 1296302053034936542183, 54444686227467334771687, 2286676821553628060410855, 96040426505252378537255911
Offset: 0

Views

Author

M. F. Hasler, Nov 04 2012

Keywords

Comments

Partial sums of powers of 42 (A009986).

Crossrefs

Programs

Formula

From Vincenzo Librandi, Nov 07 2012: (Start)
G.f.: x/((1-x)*(1-42*x)).
a(n) = 43*a(n-1) - 42*a(n-2).
a(n) = floor(42^n/41). (End)
E.g.f.: exp(x)*(exp(41*x) - 1)/41. - Elmo R. Oliveira, Aug 29 2024

A258643 Irregular triangle read by rows, n >= 1, k >= 0: T(n,k) is the number of distinct patterns of n X n squares with k holes that are squares (see the construction rule in comments).

Original entry on oeis.org

1, 1, 2, 1, 3, 1, 2, 9, 7, 4, 4, 5, 2, 25, 11, 40, 8, 33, 3, 16, 0, 4
Offset: 1

Views

Author

Kival Ngaokrajang, Jun 06 2015

Keywords

Comments

The sequence of row lengths is A261243. - Wolfdieter Lang, Aug 18 2015
The construction rules are: (o) The n X n square has horizontal and vertical diagonals. (i) A pattern must be symmetric with respect to both vertical and horizontal axes. (ii) For n >= 2, each pattern must have four squares at the corners. (iii) The squares must have continuity contact to each other either by sides or corners. (iv) The hole(s) must be square(s). Mirror patterns with respect to the main diagonal are not considered as different. See illustration in the links.
Each pattern can be a seed of a box fractal; e.g., the second pattern of T(3,0), consisting of 5 squares and 0 holes, is a seed of the Vicsek fractal (see a link below); the second pattern of T(4,2), consisting of 10 squares and 2 holes, is a seed of the fractal in a link of A002276.
If the figures are rotated by 45 degrees in the clockwise direction they can be considered as binary bisymmetric n X n matrices B_n if a red square stand for 1 and an empty square for 0. The four corners have entries 1, that is B_n[1, 1] = 1 = B_n[1, n]. The continuity of the red squares, mentioned above in point (iii), means that there is no rectangular path of 0's (no diagonal steps) in the matrix B_n that dissects it into two parts. See A261242 for more details, where also the figures with nonsquare holes and the mirrors (row reversion in the B_n matrix) are considered. - Wolfdieter Lang, Aug 18 2015

Examples

			Irregular triangle begins:
n\k  0   1   2  3   4  5   6  7  8 ...
1    1
2    1
3    2   1
4    3   1   2
5    9   7   4  4   5  2
6   25  11  40  8  33  3  16  0  4
...
		

Crossrefs

Cf. A002276 (10 squares, 2 holes), A016203 (8 squares, 0 holes), A023001 (8 squares, 1 hole), A218724 (21 squares, 4 holes).

A218727 a(n) = (24^n - 1)/23.

Original entry on oeis.org

0, 1, 25, 601, 14425, 346201, 8308825, 199411801, 4785883225, 114861197401, 2756668737625, 66160049703001, 1587841192872025, 38108188628928601, 914596527094286425, 21950316650262874201, 526807599606308980825, 12643382390551415539801, 303441177373233972955225
Offset: 0

Views

Author

M. F. Hasler, Nov 04 2012

Keywords

Comments

Partial sums of powers of 24 (A009968); q-integers for q=24: diagonal k=1 in triangle A022188.
Partial sums are in A014913. Also, the sequence is related to A014942 by A014942(n) = n*a(n) - Sum_{i=0..n-1} a(i) for n > 0. [Bruno Berselli, Nov 07 2012]

Crossrefs

Programs

Formula

From Vincenzo Librandi, Nov 07 2012: (Start)
G.f.: x/((1-x)*(1-24*x)).
a(n) = floor(24^n/23).
a(n) = 25*a(n-1) - 24*a(n-2). (End)
E.g.f.: exp(x)*(exp(23*x) - 1)/23. - Elmo R. Oliveira, Aug 29 2024

A218729 a(n) = (26^n - 1)/25.

Original entry on oeis.org

0, 1, 27, 703, 18279, 475255, 12356631, 321272407, 8353082583, 217180147159, 5646683826135, 146813779479511, 3817158266467287, 99246114928149463, 2580398988131886039, 67090373691429037015, 1744349715977154962391, 45353092615406029022167, 1179180408000556754576343
Offset: 0

Views

Author

M. F. Hasler, Nov 04 2012

Keywords

Comments

Partial sums of powers of 26 (A009970); q-integers for q=26.

Crossrefs

Programs

Formula

From Vincenzo Librandi, Nov 07 2012: (Start)
G.f.: x/((1-x)*(1-26*x)).
a(n) = floor(26^n/25).
a(n) = 27*a(n-1) - 26*a(n-2). (End)
E.g.f.: exp(x)*(exp(25*x) - 1)/25. - Elmo R. Oliveira, Aug 29 2024

A218730 a(n) = (27^n - 1)/26.

Original entry on oeis.org

0, 1, 28, 757, 20440, 551881, 14900788, 402321277, 10862674480, 293292210961, 7918889695948, 213810021790597, 5772870588346120, 155867505885345241, 4208422658904321508, 113627411790416680717, 3067940118341250379360, 82834383195213760242721, 2236528346270771526553468
Offset: 0

Views

Author

M. F. Hasler, Nov 04 2012

Keywords

Comments

Partial sums of powers of 27 (A009971); q-integers for q=27.

Crossrefs

Programs

  • Magma
    [n le 2 select n-1 else 28*Self(n-1)-27*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Nov 07 2012
    
  • Mathematica
    LinearRecurrence[{28, -27}, {0, 1}, 30] (* Vincenzo Librandi, Nov 07 2012 *)
  • Maxima
    A218730(n):=(27^n-1)/26$
    makelist(A218730(n),n,0,30); /* Martin Ettl, Nov 07 2012 */
  • PARI
    a(n)=27^n\26
    

Formula

G.f.: x/((1-x)*(1-27*x)). - Vincenzo Librandi, Nov 07 2012
a(n) = floor(27^n/26). - Vincenzo Librandi, Nov 07 2012
a(n) = 28*a(n-1) - 27*a(n-2). - Vincenzo Librandi, Nov 07 2012
E.g.f.: exp(14*x)*sinh(13*x)/13. - Elmo R. Oliveira, Aug 27 2024

A218731 a(n) = (28^n - 1)/27.

Original entry on oeis.org

0, 1, 29, 813, 22765, 637421, 17847789, 499738093, 13992666605, 391794664941, 10970250618349, 307167017313773, 8600676484785645, 240818941573998061, 6742930364071945709, 188802050194014479853, 5286457405432405435885, 148020807352107352204781, 4144582605859005861733869
Offset: 0

Views

Author

M. F. Hasler, Nov 04 2012

Keywords

Comments

Partial sums of powers of 28 (A009972).

Crossrefs

Programs

Formula

From Vincenzo Librandi, Nov 07 2012: (Start)
G.f.: x/((1-x)*(1-28*x)).
a(n) = floor(28^n/27).
a(n) = 29*a(n-1) - 28*a(n-2). (End)
E.g.f.: exp(x)*(exp(27*x) - 1)/27. - Elmo R. Oliveira, Aug 29 2024

A218739 a(n) = (36^n - 1)/35.

Original entry on oeis.org

0, 1, 37, 1333, 47989, 1727605, 62193781, 2238976117, 80603140213, 2901713047669, 104461669716085, 3760620109779061, 135382323952046197, 4873763662273663093, 175455491841851871349, 6316397706306667368565, 227390317427040025268341, 8186051427373440909660277
Offset: 0

Views

Author

M. F. Hasler, Nov 04 2012

Keywords

Comments

Partial sums of powers of 36 (A009980).

Crossrefs

Programs

Formula

From Vincenzo Librandi, Nov 07 2012: (Start)
G.f.: x/((1 - x)*(1 - 36*x)).
a(n) = 37*a(n-1) - 36*a(n-2).
a(n) = floor(36^n/35). (End)
E.g.f.: exp(x)*(exp(35*x) - 1)/35. - Stefano Spezia, Mar 28 2023
Previous Showing 21-30 of 36 results. Next