cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 21 results. Next

A370473 G.f. satisfies A(x) = 1 + x * A(x)^2 * (1 - A(x) + A(x)^2 - A(x)^3 + A(x)^4).

Original entry on oeis.org

1, 1, 4, 25, 185, 1501, 12914, 115723, 1068505, 10094770, 97117624, 948181724, 9370734322, 93562986440, 942385174150, 9563720899515, 97696642766654, 1003789888620166, 10366477185870960, 107548800153957745, 1120374840689934195, 11714707429579539268
Offset: 0

Views

Author

Seiichi Manyama, Mar 31 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(n, k)*binomial(n+5*k/2+1/2, n)/(2*n+5*k+1));

Formula

G.f. A(x) satisfies:
(1) A(x)^2 = 1 + x * A(x)^2 * (1 + A(x)^5).
(2) A(x) = sqrt(B(x)) where B(x) is the g.f. of A366401.
a(n) = Sum_{k=0..n} binomial(n,k) * binomial(n+5*k/2+1/2,n)/(2*n+5*k+1).

A371658 G.f. satisfies A(x) = 1 + x * A(x)^2 * (1 + A(x))^2.

Original entry on oeis.org

1, 4, 48, 784, 14784, 302976, 6555648, 147380480, 3408817152, 80592320512, 1938923790336, 47314993324032, 1168315059240960, 29136848453632000, 732857340425011200, 18569095605771632640, 473534596510970019840, 12144227894941523116032
Offset: 0

Views

Author

Seiichi Manyama, Apr 01 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = if(n==0, 1, sum(k=0, (n-1)\2, 4^(n-k)*binomial(n, k)*binomial(3*n-k, n-1-2*k))/n);

Formula

a(n) = (1/n) * Sum_{k=0..floor((n-1)/2)} 4^(n-k) * binomial(n,k) * binomial(3*n-k,n-1-2*k) for n > 0.
a(n) = 2^n * A219538(n). - Seiichi Manyama, Dec 26 2024

A378920 G.f. A(x) satisfies A(x) = 1 + x*A(x)^6/(1 + x*A(x)^2).

Original entry on oeis.org

1, 1, 5, 38, 339, 3308, 34191, 367844, 4076112, 46204209, 533239820, 6244542391, 74016115926, 886276231388, 10704869669941, 130271156244371, 1595708949486866, 19658780721376791, 243429900033986385, 3028086095940468087, 37821457123957529163, 474145963420441744445
Offset: 0

Views

Author

Seiichi Manyama, Dec 11 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n, r=1, s=-1, t=6, u=2) = r*sum(k=0, n, binomial(t*k+u*(n-k)+r, k)*binomial(s*k, n-k)/(t*k+u*(n-k)+r));

Formula

G.f. A(x) satisfies A(x) = 1/(1 - x*A(x)^5/(1 + x*A(x)^2)).
If g.f. satisfies A(x) = ( 1 + x*A(x)^(t/r) * (1 + x*A(x)^(u/r))^s )^r, then a(n) = r * Sum_{k=0..n} binomial(t*k+u*(n-k)+r,k) * binomial(s*k,n-k)/(t*k+u*(n-k)+r).

A364740 G.f. satisfies A(x) = 1 + x*A(x)^2 / (1 - x*A(x)^5).

Original entry on oeis.org

1, 1, 3, 15, 91, 607, 4298, 31720, 241321, 1879097, 14903013, 119965086, 977623639, 8049579047, 66864689674, 559650696185, 4715304229460, 39960204165865, 340395043021399, 2912963919210012, 25031055321749916, 215894227588453950, 1868403327770467149
Offset: 0

Views

Author

Seiichi Manyama, Aug 05 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = if(n==0, 1, sum(k=0, n-1, binomial(n, k)*binomial(2*n+3*k, n-1-k))/n);

Formula

a(n) = (1/n) * Sum_{k=0..n-1} binomial(n,k) * binomial(2*n+3*k,n-1-k) for n > 0.

A364833 G.f. satisfies A(x) = 1 + x*A(x)^2/(1 - x^3*A(x)^3).

Original entry on oeis.org

1, 1, 2, 5, 15, 49, 168, 595, 2160, 7997, 30083, 114660, 441840, 1718531, 6737820, 26600784, 105659970, 421949492, 1693120779, 6823018035, 27602090087, 112053680381, 456343848121, 1863893501065, 7633232165286, 31337360839387, 128944120202510
Offset: 0

Views

Author

Seiichi Manyama, Aug 28 2023

Keywords

Crossrefs

Programs

  • Maple
    A364833 := proc(n)
        add( binomial(n-2*k-1,k)*binomial(2*n-3*k+1,n-3*k)/ (2*n-3*k+1),k=0..floor(n/3)) ;
    end proc:
    seq(A364833(n),n=0..80); # R. J. Mathar, Aug 29 2023
  • PARI
    a(n) = sum(k=0, n\3, binomial(n-2*k-1, k)*binomial(2*n-3*k+1, n-3*k)/(2*n-3*k+1));

Formula

a(n) = Sum_{k=0..floor(n/3)} binomial(n-2*k-1,k) * binomial(2*n-3*k+1,n-3*k)/(2*n-3*k+1).
D-finite with recurrence 31*n*(626109182191*n-1858292669035) *(n-1)*(n+1) *a(n) -n*(n-1) *(244150473843619*n^2 -1454194662255591*n +2175006457069082) *a(n-1) +3*(n-1) *(292927551362415*n^3 -2593205532882651*n^2 +7084566217454162*n -5823331737745632)*a(n-2) +(-843955616916167*n^4 +9932491073296715*n^3 -42016891739306929*n^2 +76184884157722453*n -50166914106142776) *a(n-3) +18*(1509721335071*n^4 -40413442328880*n^3 +330301781039401*n^2 -1078322794857576*n +1231650372542192) *a(n-4) +18*(39673125909769*n^4 -598320530478001*n^3 +3228489073613917*n^2 -7321259523567459*n +5788776339353646) *a(n-5) +27*(n-5) *(3102413205331*n^3 -35996479327373*n^2 +114122791959960*n -64735736097804) *a(n-6) -243*(n-6) *(n-7)*(475638134099*n^2 -2399948859181*n +2877042451214) *a(n-7) -243*(45857481910*n -35520400961) *(n-5) *(n-7) *(n-8)*a(n-8)=0. - R. J. Mathar, Aug 29 2023
G.f.: (1/x) * Series_Reversion( x*(1 - x / (1 - x^3)) ). - Seiichi Manyama, Sep 28 2024

A363573 Expansion of g.f. A(x) satisfying A(x) = 1 + x*(A(x) - A(x)^3 + A(x)^5).

Original entry on oeis.org

1, 1, 3, 16, 99, 670, 4804, 35855, 275635, 2167577, 17354844, 140994899, 1159398760, 9631155422, 80703507043, 681333999628, 5789823864323, 49484286592503, 425092050147999, 3668385302806058, 31786451503719132, 276447315011186576, 2412336247105063011, 21114946136742383146
Offset: 0

Views

Author

Paul D. Hanna, Aug 14 2023

Keywords

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 16*x^3 + 99*x^4 + 670*x^5 + 4804*x^6 + 35855*x^7 + 275635*x^8 + 2167577*x^9 + 17354844*x^10 + ...
such that
A(x) = 1 + x*(A(x) - A(x)^3 + A(x)^5).
RELATED TABLE.
The table of coefficients in A(x)^n begins:
n=1: [1, 1,  3,  16,   99,   670,   4804,   35855,   275635, ...];
n=2: [1, 2,  7,  38,  239,  1634,  11798,   88506,   683045, ...];
n=3: [1, 3, 12,  67,  429,  2967,  21594,  162945,  1263183, ...];
n=4: [1, 4, 18, 104,  679,  4756,  34922,  265244,  2066591, ...];
n=5: [1, 5, 25, 150, 1000,  7101,  52645,  402725,  3155125, ...];
n=6: [1, 6, 33, 206, 1404, 10116,  75775,  584148,  4603911, ...];
n=7: [1, 7, 42, 273, 1904, 13930, 105490,  819918,  6503553, ...];
n=8: [1, 8, 52, 352, 2514, 18688, 143152, 1122312,  8962615, ...];
n=9: [1, 9, 63, 444, 3249, 24552, 190326, 1505727, 12110400, ...];
...
from which one can verify the formulas involving powers of A(x).
RELATED SERIES.
Let G(x) = 1 + Series_Reversion( x/(1 + x*(1+x)^2 + x*(1+x)^3) )
where
G(x) = 1 + x + 2*x^2 + 9*x^3 + 42*x^4 + 219*x^5 + 1202*x^6 + 6867*x^7 + 40378*x^8 + 242782*x^9 + 1485836*x^10 + ...
then
A(x) = G(x*A(x)),
and so
A(x) = (1/x) * Series_Reversion( x/G(x) );
thus,
x*A(x) = (A(x) - 1) / (1 + (A(x) - 1)*(A(x)^2 + A(x)^3) )
which is equivalent to
A(x) = 1 + x*(A(x) - A(x)^3 + A(x)^5).
		

Crossrefs

Programs

  • Maple
    a:= n-> coeff(series(RootOf(1-A+x*(A-A^3+A^5), A), x, n+1), x, n):
    seq(a(n), n=0..23);  # Alois P. Heinz, Aug 14 2023
  • PARI
    {a(n) = my(A=1+x); for(i=1, n, A = 1 + x*(A - A^3 + A^5) +x*O(x^n) ); polcoeff(A, n)}
    for(n=0, 30, print1(a(n), ", "))

Formula

G.f. A(x) = Sum_{n>=0} a(n)*x^n may be defined by the following formulas.
(1) A(x) = 1 + x*(A(x) - A(x)^3 + A(x)^5).
(2) A(x)^2 = 1 + x*(A(x) + A(x)^2 - A(x)^3 - A(x)^4 + A(x)^5 + A(x)^6).
(3) A(x)^3 = 1 + x*(A(x) + A(x)^2 - A(x)^4 + A(x)^6 + A(x)^7).
(4) A(x)^4 = 1 + x*(A(x) + A(x)^2 + A(x)^7 + A(x)^8).
(5) A(x)^5 = 1 + x*(A(x) + A(x)^2 + A(x)^5 + A(x)^8 + A(x)^9).
(6) A(x)^6 = 1 + x*(A(x) + A(x)^2 + A(x)^5 + A(x)^6 + A(x)^9 + A(x)^10).
(7) A(x)^7 = 1 + x*(A(x) + A(x)^2 + A(x)^5 + A(x)^6 + A(x)^7 + A(x)^10 + A(x)^11).
(8) A(x) = (1/x) * Series_Reversion( x/(1 + Series_Reversion( x/(1 + x*(1+x)^2 + x*(1+x)^3) ) ) ).
(9) A(x) = 1 / A(-x*A(x)^5).

A365224 G.f. satisfies A(x) = 1 + x*A(x)^4 / (1 + x*A(x)^5).

Original entry on oeis.org

1, 1, 3, 10, 30, 56, -167, -2813, -21515, -126135, -601812, -2179039, -3455504, 32238155, 430944400, 3334419890, 20083350422, 97094186751, 338485665435, 274332822425, -8491831747320, -97735154210032, -732963337489636, -4341176221239330
Offset: 0

Views

Author

Seiichi Manyama, Aug 27 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, (-1)^(n-k)*binomial(5*n-k+1, k)*binomial(n-1, n-k)/(5*n-k+1));

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(5*n-k+1,k) * binomial(n-1,n-k)/(5*n-k+1).

A369478 Expansion of (1/x) * Series_Reversion( x / ((1+x)^2 * (1+x+x^2)^2) ).

Original entry on oeis.org

1, 4, 24, 170, 1320, 10868, 93197, 823484, 7445184, 68545882, 640446224, 6057249180, 57878746750, 557903174040, 5418441862824, 52971933934834, 520869559359424, 5147999004530720, 51113415228327827, 509583784051748692, 5099262428810825568
Offset: 0

Views

Author

Seiichi Manyama, Jan 23 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serreverse(x/((1+x)^2*(1+x+x^2)^2))/x)
    
  • PARI
    a(n, s=2, t=2, u=2) = sum(k=0, n\s, binomial(t*(n+1), k)*binomial((t+u)*(n+1)-k, n-s*k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..floor(n/2)} binomial(2*n+2,k) * binomial(4*n-k+4,n-2*k).

A371657 G.f. satisfies A(x) = 1 + x * A(x)^2 * (1 + A(x) + A(x)^2).

Original entry on oeis.org

1, 3, 27, 333, 4752, 73764, 1209492, 20610693, 361403937, 6478386561, 118181952369, 2186908154748, 40949739595242, 774474351098031, 14772979729013247, 283878381945510621, 5490264493926636912, 106786725176131118523, 2087502569999563971843
Offset: 0

Views

Author

Seiichi Manyama, Apr 01 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = if(n==0, 1, sum(k=0, (n-1)\2, 3^(n-k)*binomial(n, k)*binomial(3*n-k, n-1-2*k))/n);

Formula

a(n) = (1/n) * Sum_{k=0..floor((n-1)/2)} 3^(n-k) * binomial(n,k) * binomial(3*n-k,n-1-2*k) for n > 0.

A333472 a(n) = [x^n] ( c (x/(1 + x)) )^n, where c(x) = (1 - sqrt(1 - 4*x))/(2*x) is the o.g.f. of the Catalan numbers A000108.

Original entry on oeis.org

1, 1, 3, 13, 59, 276, 1317, 6371, 31131, 153292, 759428, 3780888, 18900389, 94805959, 476945913, 2405454213, 12158471195, 61574325840, 312365992620, 1587052145492, 8074474510884, 41131551386120, 209760563456920, 1070822078321520, 5471643738383781, 27982867986637151
Offset: 0

Views

Author

Peter Bala, Mar 23 2020

Keywords

Comments

Let F(x) = 1 + f(1)*x + f(2)*x^2 + ... be a power series with integer coefficients. The associated sequence u(n) := [x^n] F(x)^n is known to satisfy the Gauss congruences: u(n*p^k) == u(n*p^(k-1)) ( mod p^k ) for any prime p and positive integers n and k. For certain power series F(x), stronger congruences may hold. Examples include F(x) = (1 + x)^2, F(x) = 1/(1 - x) and F(x) = c(x), where c(x) is the o.g.f. of the Catalan numbers A000108. The associated sequences (with some differences of offset) are A000984, A001700 and A025174, respectively.
Here we take F(x) = c(x/(1 + x)) = 1 + x + x^2 + 2*x^3 + 4*x^4 + 9*x^5 + 21*x^6 + ... (cf. A001006 and A086246) and conjecture that the associated sequence a(n) = [x^n] ( c(x/(1 + x)) )^n satisfies the supercongruences a(n*p^k) == a(n*p^(k-1)) ( mod p^(2*k) ) for prime p >= 5 and positive integers n and k. Cf. A333473.
More generally, we conjecture that for any positive integer r and any integer s the sequence a(r,s;n) := [x^(r*n)] ( c(x/(1 + x)) )^(s*n) also satisfies the above congruences.
Note that the sequence b(n) := [x^n] c(x)^n = A025174(n) satisfies the stronger congruences b(n*p^k) == b(n*p^(k-1)) ( mod p^(3*k) ) for prime p >= 5 and positive integers n and k. The sequence d(n) := [x^n] ( (1 + x)*c(x/(1 + x)) )^n = A333093(n) appears to satisfy the same congruences.

Examples

			Examples of congruences:
a(11) - a(1) = 3780888 - 1 = (11^2)*31247 == 0 ( mod 11^2 ).
a(3*7) - a(3) = 41131551386120 - 13 = (7^2)*13*23671*2727841 == 0 ( mod 7^2 ).
a(5^2) - a(5) = 27982867986637151 - 276 = (5^4)*13*74687*46113049 == 0 ( mod 5^4 ).
		

Crossrefs

Programs

  • Maple
    Cat := x -> (1/2)*(1-sqrt(1-4*x))/x:
    G := x -> Cat(x/(1+x)):
    H := (x,n) -> series(G(x)^n, x, 51):
    seq(coeff(H(x, n), x, n), n = 0..25);
  • Mathematica
    Table[SeriesCoefficient[((1 + x - Sqrt[1 - 2*x - 3*x^2]) / (2*x))^n, {x, 0, n}], {n, 0, 25}] (* Vaclav Kotesovec, Mar 29 2020 *)

Formula

a(n) = [x^n] ( (1 + x - sqrt(1 - 2*x - 3*x^2)) / (2*x) )^n.
a(n) ~ sqrt(((9386 + 1026*sqrt(57))^(1/3) + (9386 - 1026*sqrt(57))^(1/3) - 19)/228) * (((1261 + 57*sqrt(57))^(1/3) + (1261 - 57*sqrt(57))^(1/3) + 10)/6)^n / sqrt(Pi*n). - Vaclav Kotesovec, Mar 29 2020
Previous Showing 11-20 of 21 results. Next