cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A286653 Square array A(n,k), n>=0, k>=1, read by antidiagonals, where column k is the expansion of Product_{j>=1} (1 - x^(k*j))/(1 - x^j).

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 2, 0, 1, 1, 2, 2, 2, 0, 1, 1, 2, 3, 4, 3, 0, 1, 1, 2, 3, 4, 5, 4, 0, 1, 1, 2, 3, 5, 6, 7, 5, 0, 1, 1, 2, 3, 5, 6, 9, 9, 6, 0, 1, 1, 2, 3, 5, 7, 10, 12, 13, 8, 0, 1, 1, 2, 3, 5, 7, 10, 13, 16, 16, 10, 0, 1, 1, 2, 3, 5, 7, 11, 14, 19, 22, 22, 12, 0
Offset: 0

Views

Author

Ilya Gutkovskiy, May 11 2017

Keywords

Comments

A(n,k) is the number of partitions of n in which no parts are multiples of k.
A(n,k) is also the number of partitions of n into at most k-1 copies of each part.

Examples

			Square array begins:
  1,  1,  1,  1,  1,  1,  ...
  0,  1,  1,  1,  1,  1,  ...
  0,  1,  2,  2,  2,  2,  ...
  0,  2,  2,  3,  3,  3,  ...
  0,  2,  4,  4,  5,  5,  ...
  0,  3,  5,  6,  6,  7,  ...
		

Crossrefs

Main diagonal gives A000041.
Mirror of A061198.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0, [1, 0], `if`(k*i*(i+1)/2[0, l[1]*j]+l)(b(n-i*j, i-1, k)), j=0..min(n/i, k))))
        end:
    A:= (n, k)-> b(n$2, k-1)[1]:
    seq(seq(A(n, 1+d-n), n=0..d), d=0..16);  # Alois P. Heinz, Oct 17 2018
  • Mathematica
    Table[Function[k, SeriesCoefficient[Product[(1 - x^(i k))/(1 - x^i), {i, Infinity}], {x, 0, n}]][j - n + 1], {j, 0, 12}, {n, 0, j}] // Flatten
    Table[Function[k, SeriesCoefficient[QPochhammer[x^k, x^k]/QPochhammer[x, x], {x, 0, n}]][j - n + 1], {j, 0, 12}, {n, 0, j}] // Flatten

Formula

G.f. of column k: Product_{j>=1} (1 - x^(k*j))/(1 - x^j).

A328548 Number of 6-regular bipartitions of n.

Original entry on oeis.org

1, 2, 5, 10, 20, 36, 63, 106, 175, 280, 441, 680, 1034, 1548, 2290, 3346, 4840, 6930, 9837, 13844, 19337, 26810, 36925, 50530, 68741, 92984, 125113, 167490, 223155, 295960, 390825, 513954, 673214, 878480, 1142190, 1479892, 1911051, 2459896, 3156602
Offset: 0

Views

Author

N. J. A. Sloane, Oct 19 2019

Keywords

References

  • Kathiravan, T., and S. N. Fathima. "On L-regular bipartitions modulo L." The Ramanujan Journal 44.3 (2017): 549-558.

Crossrefs

Number of r-regular bipartitions of n for r = 2,3,4,5,6: A022567, A328547, A001936, A263002, A328548.
Cf. A219601.

Programs

  • Maple
    f:=(k,M) -> mul(1-q^(k*j),j=1..M);
    LRBP := (L,M) -> (f(L,M)/f(1,M))^2;
    S := L -> seriestolist(series(LRBP(L,80),q,60));
    S(6);
  • Mathematica
    nmax = 40; CoefficientList[Series[Product[(1 - x^(6*k))/(1 - x^k), {k, 1, nmax}]^2, {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 08 2024 *)

Formula

a(n) ~ 5^(1/4) * exp(Pi*sqrt(10*n)/3) / (2^(9/4) * 3^(3/2) * n^(3/4)). - Vaclav Kotesovec, Oct 08 2024

A213598 Number of partitions of n in which no parts are multiples of 49.

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77, 101, 135, 176, 231, 297, 385, 490, 627, 792, 1002, 1255, 1575, 1958, 2436, 3010, 3718, 4565, 5604, 6842, 8349, 10143, 12310, 14883, 17977, 21637, 26015, 31185, 37338, 44583, 53174, 63261, 75175, 89134, 105558, 124754, 147273, 173524
Offset: 0

Views

Author

Michael Somos, Jun 14 2012

Keywords

Comments

For n<49 we have a(n)=A000041(n), for n>=49 a(n)!=A000041(n).
In Fricke page 401, he gives the expansion sigma(omega) = q^4 + q^6 + 2q^8 + 3q^10 + 5q^12 + 7q^14 + 11q^16 + 15q^18 + ... where q = exp( Pi i omega).

Examples

			G.f. = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 7*x^5 + 11*x^6 + 15*x^7 + 22*x^8 + ...
G.f. = q^2 + q^3 + 2*q^4 + 3*q^5 + 5*q^6 + 7*q^7 + 11*q^8 + 15*q^9 + 22*q^10 + ...
		

References

  • R. Fricke, Die elliptischen Funktionen und ihre Anwendungen, Teubner, 1922, Vol. 2, see p. 401. Eq. (49)

Crossrefs

Cf. A000009 (m=2), A000726 (m=3), A001935 (m=4), A035959 (m=5), A219601 (m=6), A035985 (m=7), A261775 (m=8), A104502 (m=9), A261776 (m=10), A092885 (m=25), this sequence (m=49).

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ Product[ 1 - x^k, {k, 49, n, 49}] / Product[ 1 - x^k, {k, n}], {x, 0, n}];
    a[ n_] := SeriesCoefficient[ QPochhammer[ x^49] / QPochhammer[ x], {x, 0, n}]; (* Michael Somos, May 13 2014 *)
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^49 + A) / eta(x + A), n))};

Formula

Expansion of q^(-2) * eta(q^49) / eta(q) in powers of q.
Euler transform of period 49 sequence [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, ...].
Given g.f. A(x) then B(x) = x^2 * A(x) satisfies 0 = f(B(x), B(x^2),
B(x^4)) where f(u, v, w) = u * v * w * (1 - 7*v^2) - (v - w) * (u - v) * (v^2 - u*w).
G.f. is a period 1 Fourier series which satisfies f(-1 / (49 t)) = 1 / (7 f(t)) where q = exp(2 Pi i t).
G.f.: Product_{k>0} (1 - x^(49*k)) / (1 - x^k).
a(n) ~ exp(4*Pi*sqrt(2*n)/7) / (2^(1/4) * 7^(3/2) * n^(3/4)). - Vaclav Kotesovec, Oct 14 2015
a(n) = (1/n)*Sum_{k=1..n} A287926(k)*a(n-k), a(0) = 1. - Seiichi Manyama, Jun 16 2017

A320608 Number of parts in all partitions of n in which no part occurs more than five times.

Original entry on oeis.org

1, 3, 6, 12, 20, 29, 47, 71, 104, 150, 213, 292, 405, 547, 736, 977, 1292, 1688, 2198, 2834, 3638, 4636, 5890, 7431, 9347, 11684, 14564, 18067, 22348, 27531, 33813, 41378, 50504, 61438, 74561, 90208, 108896, 131096, 157485, 188717, 225682, 269285, 320691
Offset: 1

Views

Author

Alois P. Heinz, Oct 17 2018

Keywords

Crossrefs

Column k=5 of A210485.
Cf. A219601.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, [1, 0], `if`(5*i*(i+1)/2 [0, l[1]*j]+l)(b(n-i*j, min(n-i*j, i-1))), j=0..min(n/i, 5))))
        end:
    a:= n-> b(n$2)[2]:
    seq(a(n), n=1..50);
  • Mathematica
    Table[Length[Flatten[Select[IntegerPartitions[n], Max[Tally[#][[All, 2]]] <= 5 &]]], {n, 43}] (* Robert Price, Jul 31 2020 *)

Formula

a(n) ~ log(6) * exp(Pi*sqrt(5*n)/3) / (2 * Pi * 5^(1/4) * n^(1/4)). - Vaclav Kotesovec, Oct 18 2018

A280874 Expansion of Product_{k>=1} (1 - x^(6*k)) * (1 + x^k) / (1 - x^k).

Original entry on oeis.org

1, 2, 4, 8, 14, 24, 39, 62, 96, 146, 218, 320, 463, 662, 936, 1310, 1816, 2496, 3404, 4608, 6196, 8278, 10994, 14520, 19076, 24938, 32448, 42032, 54218, 69656, 89149, 113680, 144456, 182952, 230966, 290688, 364774, 456446, 569600, 708938, 880128, 1089984
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 09 2017

Keywords

Comments

Convolution of A219601 and A000009.

Crossrefs

Programs

  • Mathematica
    nmax = 60; CoefficientList[Series[Product[(1-x^(6*k))*(1+x^k)/(1-x^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ Pi*sqrt(2) * BesselI(1, sqrt(8*n+2)*Pi/3) / (3*sqrt(12*n+3)).
a(n) ~ exp(2*Pi*sqrt(2*n)/3) / (6*2^(3/4)*n^(3/4)) * (1 + (Pi/6 - 9/(16*Pi))/sqrt(2*n) + (Pi^2/144 - 135/(1024*Pi^2) - 15/64)/n).

A336766 The number of partitions of n into an even number of parts, each part occurring at most five times, minus the number of partitions of n into an odd number of parts, each part occurring at most five times.

Original entry on oeis.org

1, -1, 0, -1, 1, -1, 0, 0, 2, -1, 1, -1, 1, -1, 1, -1, 2, -2, 1, -2, 2, -2, 1, -2, 3, -3, 2, -2, 3, -3, 3, -3, 4, -4, 3, -4, 5, -4, 4, -4, 6, -5, 5, -6, 6, -7, 6, -6, 8, -8, 7, -8, 9, -9, 8, -9, 11, -11, 10, -11, 12, -12, 11, -13, 15, -15, 14, -15, 17, -17, 16, -17
Offset: 0

Views

Author

Jeremy Lovejoy, Aug 04 2020

Keywords

Examples

			There are 10 partitions of 6 where parts occur at most five times: 6, 5+1, 4+2, 4+1+1, 3+3, 3+2+1, 3+1+1+1, 2+2+2, 2+2+1+1, 2+1+1+1+1, and so a(6) = 0.
		

Crossrefs

Formula

G.f.: Product_{n>0} ((1-q^(6*n))/(1+q^n)).
Previous Showing 11-16 of 16 results.